2022-2023年北师大版数学九年级上册2.6《应用一元二次方程》课时练习(含答案)
加入VIP免费下载

2022-2023年北师大版数学九年级上册2.6《应用一元二次方程》课时练习(含答案)

ID:1244568

大小:73.22 KB

页数:8页

时间:2022-09-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022-2023年北师大版数学九年级上册2.6《应用一元二次方程》课时练习一、选择题1.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578B.800(1-a%)2=578C.800(1-2a%)=578D.800(1-a2%)=5782.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000    B.200+200×2x=1000C.200+200×3x=1000    D.200[1+(1+x)+(1+x)2]=10003.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x相同,那么()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1964.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=05.一个矩形的长比宽多3cm,面积是25cm2,求这个矩形的长和宽.设矩形的宽为xcm,则下面所列方程正确的是()A.x2-3x+25=0B.x2-3x-25=0C.x2+3x-25=0D.x2+3x-50=06.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是(  )A.x(x-1)=2×90  B.x(x﹣1)=90   C.2x(x-1)=90    D.x(x+1)=907.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是(   ) A.(a-10%)(a+15%)万元    B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元       D.a(1-10%+15%)万元8.为改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约12m2提高到14.52m2,若每年的年增长率相同,则年增长率为()A.9%B.10%C.11%D.12%9.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A.8人   B.9人   C.10人     D.11人10.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为(  )A.1米B.1.5米C.2米D.2.5米二、填空题11.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前每个月的自行车销量的月平均增长率相同,设月平均增长率为x,由题意可得方程:.12.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,若设参赛球队的个数是x,则列出方程为     .13.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程.14.某班x名学生,同学们两两互相赠送贺卡,共送贺卡1560张,则可列方程.15.某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有家商家参加了交易会.16.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是    m(可利用的围墙长度超过6m). 三、解答题17.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?18.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.19.某体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?20.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2? 21.某商店从厂家以21元/件的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖(350-10a)件,但物价局限定每件加价不能超过进价的20%.商店计划要赚400元,需要卖出多少件商品?每件商品的售价为多少元?22.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?23.如图,要设计一个宽20cm,长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积9/25,应如何设计彩条的宽度? 参考答案1.B.2.D.3.C.4.C.5.C..6.B..7.B.8.B.9.B..10.A..11.答案为:64(1+x)2=100.12.答案为:x(x-1)=28.13.答案为:2(1+x)+2(1+x)2=814.答案为:x(x-1)=1560.15.答案为:9.16.答案为:1.17.解:设有x家公司出席了这次交易会,根据题意,得x(x-1)=78.解得x1=13,x2=-12(舍去).答:有13家公司出席了这次交易会.18.解:设小正方形的边长为xcm,由题意得10×8﹣4x2=80%×10×8,80﹣4x2=64,4x2=16,x2=4.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2. 答:截去的小正方形的边长为2cm.19.解:设要邀请x支球队参加比赛,由题意得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.20.解:设矩形温室的宽为xm,则长为2xm.根据题意,得(x-2)(2x-4)=288.解得x1=-10(不合题意,舍去),x2=14.所以2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.21.解:由题意,得(a-21)(350-10a)=400,解得a1=25,a2=31.∵物价局限定每件加价不能超过进价的20%,∴每件商品的售价不超过25.2元.∴a=31不合题意,舍去.∴350-10a=350-10×25=100.答:需要卖出100件商品,每件商品的售价为25元.22.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意,舍去),则月平均增长率为10%(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是0.6×21=12.6<13.31,∴不能完成投递任务,∴需要增加业务员(13.31-12.6)÷0.6=1≈2(人). 23.解:设横彩条宽为2xcm,则竖彩条宽为3xcm,由题意得(20-4x)(30-6x)=×600,解得x1=1,x2=9当x=9时,宽为18.∵18×2>20(舍去)∴x=1.答:使横彩条宽为7cm,竖彩条宽为3cm

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料