人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案)
加入VIP免费下载

人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案)

ID:1245701

大小:74.56 KB

页数:9页

时间:2022-09-19

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
人教版数学九年级上册专项培优练习三《一元二次方程实际应用》一、选择题1.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1802.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=3.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.若每轮感染中平均一台电脑会感染x台电脑,则下面所列方程中正确的是(  )A.x(x+1)=81  B.1+x+x2=81   C.(1+x)2=81  D.1+(1+x)2=814.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程是(   )A.x(x+1)=64  B.x(x﹣1)=64  C.(1+x)2=64  D.(1+2x)=645.某市广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x米,则可列方程为(   )A.x(x-10)=200B.2x-2(x-10)=200C.2x+2(x+10)=200D.x(x+10)=2006.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是(   )A.x(x-1)=2×45   B.x(x+1)=2×45C.x(x-1)=45   D.x(x+1)=45 7.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是(  )A.x2=21   B.x(x-1)=2×21C.x2=2×21   D.x(x-1)=218.毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34B.35C.36D.379某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15%B.20%C.5%D.25%10.市工会组织篮球比赛庆五一,赛制为单循环形式(每两队之间都赛一场),共进行了36场比赛,则这次参加比赛的球队个数为(  )A.11个 B.10个 C.8个 D.9个11.利华机械厂四月份生产零件50万个,若五.六月份平均每月的增长率是20%,则第二季度共生产零件()A.100万个  B.160万个 C.180万个  D.182万个12.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格售出,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低元.() A.0.2或0.3B.0.4C.0.3D.0.2二、填空题13.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是  .14.如图,某小区规划在一个长30m,宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少米?设通道的宽为xm,由题意列得方程. 15.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为  .16.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个矩形挂图的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为.17.新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为.18.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程.三、解答题19.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.20.有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?21.某小区有一块长为18米,宽为6米的矩形空地,计划在空地中修两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行甬道,求人行甬道的宽度.22.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米,求截去正方形的边长. 23.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?24.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售? 25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品盈利元(用含x的代数式表示); (3)每件商品降价多少元时,商场日盈利可达到2000元? 参考答案1.C2.B3.C4C5.D6.A7.B8.B9.B10.D11.D12.C13.答案为:289(1﹣x)2=256.14.答案为:(30-2x)(20-x)=6×78.15.答案为:x(5﹣x)=6.16.答案为:x2+40x-75=0.17.答案为:(40-x)(20+2x)=1200.18.答案为:2(1+x)+2(1+x)2=819.解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.20.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64.解得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人). 答:又有448人被传染.21.解:设人行道的宽度为x米(0<x<3),根据题意得: (18-3x)(6-2x)=60, 整理得,(x-1)(x-8)=0. 解得:x1=1,x2=8(不合题意,舍去). 答:人行通道的宽度是1米.22.解:设截去正方形的边长为x厘米,由题意得,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,所以长方体的底面积为:(60﹣2x)(40﹣2x)=800,即:x2﹣50x+400=0,解得x1=10,x2=40(不合题意舍去).答:截去正方形的边长为10厘米.23.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.24.解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)=2240.化简,得x2﹣10x+24=0解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.答:该店应按原售价的九折出售.25.解:(1)(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)2x;50-x. ∵该商品每降价1元,商场平均每天可多售出2件,∴每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得(50-x)×(30+2x)=2000,整理,得x2-35x+250=0,解得x1=10,x2=25,∵商场要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.

资料: 5702

进入主页

人气:

10000+的老师在这里下载备课资料