2022-2023年浙教版数学九年级上册2.2《简单事件的概率》课时练习一、选择题1.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方()A.公平B.对甲有利C.对乙有利D.无法确定公平性2.一个箱子中放有红、黑、黄三种小球,每个球除颜色外都相同,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢.这个游戏是( )A.公平的B.先摸者赢的可能性大B.不公平的D.后摸者赢的可能性大3.用8个除颜色外均相同的球设计一个游戏,使摸到白球与摸不到白球的可能性一样大,摸到红球的可能性比摸到黄球的可能性大,则游戏设计中白、红、黄球的个数可能是( )A.4,2,2B.3,2,3C.4,3,1D.5,2,14.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,使图中阴影部分的图形构成一个轴对称图形的概率是( )A.B.C.D.5.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是( )A.1B.C.D.6.从﹣2、﹣1、1中,任取两个不同的数作为一次函数y=kx+b的系数k、b,则一次函数y=kx+b的图象交x轴于正半轴的概率是( )
A.B.C.D.7.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A.B.C.D.8.一枚质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的事件是().A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数的和小于29.某电视节目中有一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。参加这个游戏的观众有三次翻牌的机会。某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是().A.B.C.D.10.有三张质地相同的卡片,正面分别写有数字﹣2,﹣1,1,现将三张卡片背面朝上随机抽取一张,以其正面数字作为x的值,然后从剩余的两张卡片随机抽一张,以其正面数字作为y的值,则点(x,y)在第三象限的概率( )A.B.C.D.二、填空题11.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .
12.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是 .13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是 .14.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为 .15.某电视频道播放正片与广告的时间之比为12:1,广告随机地穿插在正片之间;随机打开电视机收看该频道,开机就能看到正片的概率是_________;16.把一个圆形转盘按1:2:3:4的比例分成A,B,C,D四个扇形,自由转动转盘,转盘停止后,指针落在B扇形的概率是________17.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是 .三、解答题18.春节,小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.
19.为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等(1)第一天,八(1)班没有被选中的概率是 ;(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率20.不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.
21.已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
参考答案1.A2.A3.C4.A5.C6.A7.C8.C9.B10.D11.答案为:.12.答案为:.13.答案为:.14.答案为:.15.答案为:16.答案为:17.答案为:.18.解:(1). (2)画树状图如下:由列表或画树状图可知,共有12种等可能情况,其中恰好取到“春”“节”两个灯笼的有2种,
∴P(两次恰好取到“春”“节”)==.19.解:(1)第一天,八(1)班没有被选中的概率是.故答案为.(2)由树状图可知,一共有20种可能,八(1)班被选中的可能有8种可能,∴前两天八(1)班被选中的概率为=.20.解:(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和等于4的结果数为2,所以“两次取出的球标号和等于4”的概率==.21.解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:
由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.22.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为.(2)画树状图如下:共有12种等可能的情况,其中恰好小红抽中“唐诗”且小明抽中“宋词”的有1种,∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为.