2022-2023年苏科版数学七年级上册3.5《去括号》课时练习一、选择题1.下列各式中,去括号正确的是( )A.a﹣(b﹣c)=a﹣b﹣cB.﹣a+(b﹣c)=﹣a﹣b+cC.﹣(a﹣b)+c=﹣a﹣b+cD.﹣(a﹣b)﹣c=﹣a+b﹣c2.下列变形正确的是( )A.a﹣(b﹣c)=a﹣b﹣cB.a+(﹣2b+c)=a﹣2b﹣cC.a﹣(﹣2b+c)=a+2b﹣cD.a﹣(b﹣2c)=a﹣2c+b3.下列多项式中与﹣2x2y+3xy2﹣xy﹣x3+y3相等的是( )A.﹣(2x2y﹣3xy2)+xy+x3﹣y3B.﹣(2x2y﹣3xy2+xy)+x3﹣y3C.﹣2x2y﹣(﹣3xy2+xy+x3﹣y3)D.﹣2x2y+3xy2﹣(xy+x3+y3)4.在下列去括号或添括号的变形中,错误的是( )A.a3﹣(2a﹣b﹣c)=a3﹣2a+b+cB.3a﹣5b﹣1+2c=﹣(﹣3a)﹣[5b﹣(2c﹣1)]C.﹣(a+1)﹣(﹣b+c)=+(﹣1+b﹣a﹣c)D.a﹣b+c﹣d=a﹣b+(d+c)5.a﹣2b﹣3c的相反数是( )A.a+2b+3cB.﹣a+2b+3cC.﹣a﹣2b﹣3cD.﹣a﹣2b+3c6.将﹣(a2﹣1)去括号,正确的是( )A.﹣a2﹣1B.a2﹣1C.﹣a2+1D.a2+17.3mn﹣2n2+1=2mn﹣______,横线上所填的式子是( )A.2m2﹣1B.2n2﹣mn+1C.2n2﹣mn﹣1D.mn﹣2n2+1
8.如果M=5x2﹣6x+4,N=5x2+6x﹣4,那么M﹣N等于()A.﹣12x+8B.﹣12x﹣8C.﹣12xD.12x+89.若A是一个五次多项式,B也是一个五次多项式,则A+B一定是()A.五次多项式B.不高于五次的整式C.不高于五次的多项式D.十次多项式10.化简(2x-3y)-3(4x-2y)的结果为()A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y11.下列去括号错误的共有()①a+(b+c)=ab+c②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c④a2-[-(-a+b)]=a2-a-bA.1个B.2个C.3个D.4个12.不改变多项式3b3-2ab2+4a2b-a3的值,给后面的三项添上括号,结果正确的是( )A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)二、填空题13.化简:-3x-2(6x-5)=___________14.计算:3(2x+1)-6x=________.15.化简:8y-3(3y+2)=________.16.{-[-(a+b)])-{-[-(a-b)])去掉括号得_______.17.已知1﹣( )=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是 .18.有这样一道题:有两个代数式A,B,已知B为4x2﹣5x﹣6.试求A+B.马虎同学误将A+B看成A﹣B,结果算得的答案是﹣7x2+10x+12,则该题正确的答案: .三、解答题19.按下列要求给多项式﹣a3+2a2﹣a+1添括号.(1)使最高次项系数变为正数;(2)使二次项系数变为正数;
(3)把奇次项放在前面是“﹣”号的括号里,其余的项放在前面是“+”号的括号里.20.下列去括号正确吗?如有错误,请改正.(1)+(-a-b)=a-b;(2)5x-(2x-1)-xy=5x-2x+1+xy;(3)3xy-2(xy-y)=3xy-2xy-2y;(4)(a+b)-3(2a-3b)=a+b-6a+3b.21.若xy=-,x+y=,求2x+(3xy-5x)-3y的值.22.多项式3x2-2x+1减去一个多项式A的差是4x2-3x+4,求这个多项式A.23.小亮由于看错了运算符号,把一个整式减去多项式ab-2bc+3ac误认为加上这个多项式,结果得出的答案是:2bc-3ac+2ab,求原题的正确答案.
参考答案1.D2.C3.C4.D5.B6.C7.C8.A9.B10.B11.C12.D13.答案为:-15x+1014.答案为:315.答案为:-y-616.答案为:2b17.答案为:2x﹣xy+y2.18.答案为:x2.19.解:(1)根据题意可得:﹣(a3﹣2a2+a﹣1);(2)根据题意可得:﹣a3+2a2﹣a+1;(3)根据题意可得:﹣(a3+a)+(2a2+1).20.解:(1)错误,应该是+(-a-b)=-a-b.(2)错误,应该是5x-(2x-1)-xy=5x-2x+1-xy.(3)错误,应该是3xy-2(xy-y)=3xy-2xy+2y.(4)错误,应该是(a+b)-3(2a-3b)=a+b-6a+9b.21.解:原式=2x+3xy-5x-3y=-3x-3y+3xy=-3(x+y)+3xy.当xy=-,x+y=时,原式=-3×+3×(-)=--1=-1.
22.原式=-x2+x-323.解:6bc-9ac