2022-2023年苏科版数学八年级上册6.4《用一次函数解决问题》课时练习一、选择题1.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=(50-2x)(0<x<50)D.y=(50-x)(0<x<25)2.“五一节”期间,王老师一家自驾游去了离家170千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时3.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.若该用户本月用水21吨,则应交水费()A.52.5元B.45元C.42元D.37.8元4.端午节前夕,在东昌湖举行的全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系式如图所示,下列说法错误的是( )A.乙队比甲队提前0.25min到达终点
B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255m/min5.某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23B.24C.25D.266.甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )A.乙摩托车的速度较快B.经过小时甲摩托车行驶到A,B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地16km7.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为( )
A.40平方米 B.50平方米 C.80平方米 D.100平方米8.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁( ) 甲 乙丙 丁 红豆棒冰(枝) 18 15 24 27 桂圆棒冰(枝) 30 25 40 45 总价(元) 396 330 528 585A.甲B.乙C.丙D.丁9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中正确结论的个数是( )A.0B.1C.2D.310.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图像如图所示,请你根据图像判断,下列说法正确的是( ).
A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快11.如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是( )A.5 B.7.5 C.10 D.2512.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分钟,在原地休息了4分钟,然后以500米/分的速度匀速骑回出发地,设时间为x分钟,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个桶注水,注5分钟后停止,等4分钟后,再以2升/分的速度匀速倒空桶中的水,设时间为x分钟,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0,其中,符合图中所示函数关系的问题情境的个数为( )A.0B.1C.2D.3
二、填空题13.为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y与该排排数x之间的函数关系式为(x为1≤x≤60的整数)14.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.15.如图,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数的图像,图中s,t分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h.16.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(m)与时间t(min)的函数图象,则小明回家的速度是每分钟步行m.17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示.
则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 .(在横线上填写正确的序号)18.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象.当快车到达甲地时,慢车离甲地的距离为 千米.三、解答题19.两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
20.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.21.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30________2:50首尔时间________12:15________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?
22.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B的坐标是 ;(2)线段AB所表示的y与x的函数关系式是 ;(3)试在图中补全点B以后的图象.23.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
参考答案1.D2.C.3.C4.D5.B6.C7.B8.D9.D10.C11.C12.C13.答案为:y=39+x14.答案为:y=100x-40;15.答案为:4.16.答案为:80.17.答案为:①②④ 18.答案为:60.19.解:(1)设函数解析式为y=kx+b,根据题意,得解得∴y与x之间的函数解析式为y=1.5x+4.5.(2)当x=12时,y=1.5×12+4.5=22.5.答:它的高度是22.5cm.20.解:(1)设y关于x的函数关系式为y=kx+b,由题意,得解得∴y=1.25x+29.75.(2)当x=6.2时,y=1.25×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.
21.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.填表如下:北京时间7:30__11:15__2:50首尔时间__8:30__12:15__3:50__(2)从图2看出,设伦敦时间(夏时制)为t时,则北京时间为(t+7)时,由第(1)题,知韩国首尔时间为(t+8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30.22.解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发,∴弟弟1分钟走了60m,∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B的坐标为:(9,120),故答案为:60,120;(2)设线段AB所表示的y与x的函数关系式是:y=kx+b,把A(3,0),B(9,120)代入y=kx+b得:3k+b=0,9k+b=120,解得:k=20,b=-60.∴y=20x﹣60,故答案为:y=20x﹣60.(3)如图所示;23.解:(1)设购进甲种服装x件,由题意,得80x+60(100-x)≤7500,解得x≤75.答:甲种服装最多购进75件.(2)设总利润为W元,∵甲种服装不少于65件,∴65≤x≤75.W=(120-80-a)x+(90-60)(100-x)
=(10-a)x+3000.方案1:当0<a<10时,10-a>0,W随x的增大而增大,∴当x=75时,W有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,∴按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,W随x的增大而减小,∴当x=65时,W有最大值,则购进甲种服装65件,乙种服装35件.