2022-2023年湘教版数学八年级上册2.3《等腰三角形》课时练习一、选择题1.在△ABC中,AB=c,BC=a,AC=b,下列条件不能判定△ABC是等腰三角形的是()A.∠A∶∠B∶∠C=1∶1∶3B.a∶b∶c=2∶2∶3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C2.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CEB.AD=AEC.DA=DED.BE=CD3.等腰三角形的两边长分别为5和11,则它的周长为( )A.21B.21或27C.27D.254.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )A.∠EBC=∠BACB.∠EBC=∠ABEC.AE=ECD.AE=BE5.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )
A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD7.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()A.45°B.135°C.45°或67.5°D.45°或135°8.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为( )A.20° B.35° C.40° D.70°9.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°10.在△ABC中,AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,∠BAD度数为()A.36°B.40°C.45°D.50°11.如图,已知下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是( )A.①③④B.①②③④C.①②④D.①③
12.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°二、填空题13.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,确定△ABC是等腰三角形.你添加的条件是. 14.如图,在Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于E,D.若AC=6,AB=8,则∠DOE=,DE的长为.15.如图,在等腰△ABC中,AB=AC=BD,∠BAD=70°,∠DAC= .16.等腰三角形的周长是22cm.①一边长是8cm,则其他两边的长分别是.②一边长是4cm,则其他两边的长分别是.17.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是
18.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.三、解答题19.从①AB=DC;②BE=CE;③∠B=∠C;④∠BAD=∠CDA四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).20.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.
21.如图,在△ABC中,∠ABC的角平分线OB与∠ACB的角平分线OC相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.(1)请写出图中所有的等腰三角形,并给予证明;(2)若AB+AC=14,求△AMN的周长.22.如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.23.如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:①AB=AC;②AD平分∠CAE;③AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明.
参考答案1.D2.C3.C4.A5.B6.D7.D8.C9.D10.B11.A12.D13.答案为:BD=CD(答案不唯一).14.答案为:135°,14.15.答案为:30°16.答案为:8cm,4cm,9cm,9cm.17.答案为:3.18.答案为:72°19.解:选择的条件是:③∠B=∠C④∠BAD=∠CDA(或①③,②③,①④);证明:在△BAD和△CDA中,∵,∴△BAD≌△CDA(AAS),∴∠BDA=∠CAD∴△AED是等腰三角形20.(1)证明:∵在△ADB和△BCA中,,∴△ADB≌△BCA(SSS);
(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.21.解:(1)△MBO和△NOC是等腰三角形,∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∴△MBO和△NOC是等腰三角形;(2)∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∵△AMN的周长=AM+MO+ON+AN,∴△AMN的周长=AM+MB+AN+NC=AB+AC=14.22.解:∵AB=AC,DA=DB,∴∠B=∠C=∠BAD,∵CA=CD,∴∠CDA=∠CAD,又∠CDA=∠B+∠BAD=2∠B=2∠C,∴∠CAD=2∠C,在△ACD中,∠C+∠CDA+∠CAD=180°,∴2∠C+2∠C+∠C=180°,
∴∠C=36°,∴∠BAD=36°,∠CAD=2∠C=72°,∴∠BAC=∠BAD+∠CAD=36°+72°=108°.23.解:命题:如果①②,那么③.证明如下:∵AB=AC,∴∠ABC=∠ACB.∵AD平分∠CAE,∴∠DAE=∠CAD.又∠DAE+∠CAD=∠ABC+∠ACB,∴2∠CAD=2∠C,即∠CAD=∠C,∴AD∥BC.