人教版八年级上册13.3等腰三角形(第3课时)同步课件
加入VIP免费下载

人教版八年级上册13.3等腰三角形(第3课时)同步课件

ID:1247838

大小:3.02 MB

页数:31页

时间:2022-10-24

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第十三章轴对称13.3等腰三角形第3课时 1.探索等边三角形的性质和判定.(重点)2.能运用等边三角形的性质和判定进行计算和证明.(难点)学习目标 小明想制作一个三角形的相框,他有四根木条长度分别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状的三角形?问题引入导入新课 等腰三角形等边三角形一般三角形在等腰三角形中,有一种特殊的情况,就是底与腰相等,即三角形的三边相等,我们把三条边都相等的三角形叫作等边三角形. 名称图形定义性质判定等腰三角形等边对等角三线合一等角对等边两边相等两腰相等轴对称图形ABC有两条边相等的三角形叫做等腰三角形 讲授新课类比探究ABCABC问题1等边三角形的三个内角之间有什么关系?等腰三角形AB=AC∠B=∠C等边三角形AB=AC=BCAB=AC∠B=∠CAC=BC∠A=∠B∠A=∠B=∠C内角和为180°=60°等边三角形的性质 结论:等边三角形的三个内角都相等,并且每一个角都等于60°.已知:AB=AC=BC,求证:∠A=∠B=∠C=60°.证明:∵AB=AC.∴∠B=∠C.(等边对等角)同理∠A=∠C.∴∠A=∠B=∠C.∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°. ABCABC问题2等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?结论:等边三角形每条边上的中线,高和所对角的平分线都“三线合一”.顶角的平分线、底边的高底边的中线三线合一一条对称轴三条对称轴 图形等腰三角形性质每一边上的中线、高和这一边所对的角的平分线互相重合三个角都相等,对称轴(3条)等边三角形对称轴(1条)两个底角相等底边上的中线、高和顶角的平分线互相重合且都是60º两条边相等三条边都相等知识要点 例1如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.典例精析 方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常应用在求三角形角度的问题上,一般需结合“等边对等角”、三角形的内角和与外角的性质. 变式训练:如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.证明:∵△ABC是等边三角形,BD是角平分线,∴∠ABC=∠ACB=60°,∠DBC=30°.又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边). 例2△ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.又∵BM=CN,∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°. 方法总结:此题属于等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等. 类比探究图形等腰三角形判定三个角都相等的三角形是等边三角形等边三角形从角看:两个角相等的三角形是等腰三角形从边看:两条边相等的三角形是等腰三角形三条边都相等的三角形是等边三角形小明认为还有第三种方法“两条边相等且有一个角是60°的三角形也是等边三角形”,你同意吗?等边三角形的判定方法:有一个角是60°的等腰三角形是等边三角形.等边三角形的判定 辩一辩:根据条件判断下列三角形是否为等边三角形.(1)(2)(6)(5)不是是是是是(4)(3)不一定是 例3如图,在等边三角形ABC中,DE∥BC,求证:△ADE是等边三角形.ACBDE典例精析证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE//BC,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.想一想:本题还有其他证法吗? 证明:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°.∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.变式1若点D、E在边AB、AC的延长线上,且DE∥BC,结论还成立吗?ADEBC 变式2若点D、E在边AB、AC的反向延长线上,且DE∥BC,结论依然成立吗?证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠C=60°.∵DE∥BC,∴∠B=∠D,∠C=∠E.∴∠EAD=∠D=∠E.∴△ADE是等边三角形.ADEBC 变式3:上题中,若将条件DE∥BC改为AD=AE,△ADE还是等边三角形吗?试说明理由.ACBDE证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵AD=AE,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形. 例4等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.解:△APQ为等边三角形.证明如下:∵△ABC为等边三角形,∴AB=AC.∵BP=CQ,∠ABP=∠ACQ,∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形. 方法总结:判定一个三角形是等边三角形有以下方法:一是证明三角形三条边相等;二是证明三角形三个内角相等;三是先证明三角形是等腰三角形,再证明有一个内角等于60°. 针对训练:如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.证明:∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是等边三角形. 当堂练习2.如图,等边三角形ABC的三条角平分线交于点O,DE∥BC,则这个图形中的等腰三角形共有()A.4个B.5个C.6个D.7个DACBDEO1.等边三角形的两条高线相交成钝角的度数是(  )A.105°B.120°C.135°D.150°B 3.在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是(  )A.10°B.15°C.20°D.25°4.如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为18cm,EC=2cm,则△ADE的周长是cm.ACBDE12B 5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.证明:∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°-90°-30°=60°,∴∠FAE=∠EBC.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC(ASA). 6.如图,A、O、D三点共线,△OAB和△OCD是两个全等的等边三角形,求∠AEB的大小.CBODAE解:∵△OAB和△OCD是两个全等的等边三角形.∴AO=BO,CO=DO,∠AOB=∠COD=60°.∵A、O、D三点共线,∴∠DOB=∠COA=120°,∴△COA≌△DOB(SAS).∴∠DBO=∠CAO.设OB与EA相交于点F,∵∠EFB=∠AFO,∴∠AEB=∠AOB=60°.F 7.图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图①,线段AN与线段BM是否相等?请说明理由;(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.拓展提升:图①图② 解:(1)AN=BM.理由:∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠ACN=∠MCB.∴△ACN≌△MCB(SAS).∴AN=BM.图① (2)△CEF是等边三角形.证明:∵∠ACE=∠FCM=60°,∴∠ECF=60°.∵△ACN≌△MCB,∴∠CAE=∠CMB.∵AC=MC,∴△ACE≌△MCF(ASA),∴CE=CF.∴△CEF是等边三角形.图② 课堂小结等边三角形定义底=腰特殊性性质特殊性边三边相等角三个角都等于60°轴对称性轴对称图形,每条边上都具有“三线合一”性质判定特殊性三边法三角法等腰三角形法

资料: 2159

进入主页

人气:

10000+的老师在这里下载备课资料