人教版八年级上册12.3角平分线的性质(第2课时)同步课件
加入VIP免费下载

人教版八年级上册12.3角平分线的性质(第2课时)同步课件

ID:1247852

大小:2.84 MB

页数:25页

时间:2022-10-24

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第十二章全等三角形12.3角平分线的性质第2课时 1.理解角平分线判定定理.(难点)2.掌握角平分线判定定理内容的证明方法并应用其解题.(重点)3.学会判断一个点是否在一个角的平分线上.学习目标 导入新课复习回顾ODPP到OA的距离P到OB的距离角平分线上的点几何语言描述:∵OC平分∠AOB,且PD⊥OA,PE⊥OB.∴PD=PE.ACB角的平分线上的点到角的两边的距离相等.1.叙述角平分线的性质定理不必再证全等E 2.我们知道,角平分线上的点到角的两边的距离相等.那么到角的两边的距离相等的点是否在角的平分线上呢?到角的两边的距离相等的点在角的平分线上. 讲授新课PAOBCDE角的内部到角的两边距离相等的点在角的平分线上.问题:交换角的平分线的性质中的已知和结论,你能得到什么结论,这个新结论正确吗?角平分线的性质:角的平分线上的点到角的两边的距离相等.∵OC平分∠AOB,且PD⊥OA,PE⊥OB∴PD=PE几何语言:猜想:思考:这个结论正确吗?角平分线的判定 已知:如图,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=PE.求证:点P在∠AOB的角平分线上.证明:作射线OP,∴点P在∠AOB角的平分线上.在Rt△PDO和Rt△PEO中,(全等三角形的对应角相等).OP=OP(公共边),PD=PE(已知),BADOPE∵PD⊥OA,PE⊥OB.∴∠PDO=∠PEO=90°,∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP证明猜想 判定定理:角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.知识总结 典例精析例1:如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O方法点拨:根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点. 活动1分别画出下列三角形三个内角的平分线,你发现了什么?发现:三角形的三条角平分线相交于一点三角形的内角平分线 活动2分别过交点作三角形三边的垂线,用刻度尺量一量,每组垂线段,你发现了什么?发现:过交点作三角形三边的垂线段相等你能证明这个结论吗? 已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.证明结论证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.DEFABCPNM 想一想:点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?点P在∠A的平分线上.结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.DEFABCPNM MENABCPOD变式1:如图,在直角△ABC中,∠C=90°,AP平分∠BAC,BD平分∠ABC;AP,BD交于点O,过点O作OM⊥AC,若OM=4,(1)求点O到△ABC三边的距离和.温馨提示:不存在垂线段———构造应用12 解:连接OCMENABCPOD变式1:如图,在直角△ABC中,∠C=900,AP平分∠BAC,BD平分∠ABC;AP,BD交于点O,过点O作OM⊥AC,若OM=4.(2)若△ABC的周长为32,求△ABC的面积. 1.应用角平分线性质:存在角平分线涉及距离问题2.联系角平分线性质:距离面积周长条件知识与方法 例2如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为(  )A.110°B.120°C.130°D.140°A解析:由已知,O到三角形三边的距离相等,所以O是内心,即三条角平分线的交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180°-40°=140°,∠OBC+∠OCB=70°,∠BOC=180°-70°=110°. 由已知,O到三角形三边的距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.方法总结 归纳总结角的平分线的性质图形已知条件结论PCPCOP平分∠AOBPD⊥OA于DPE⊥OB于EPD=PEOP平分∠AOBPD=PEPD⊥OA于DPE⊥OB于E角的平分线的判定 当堂练习1.如图,某个居民小区C附近有三条两两相交的道路MN、OA、OB,拟在MN上建造一个大型超市,使得它到OA、OB的距离相等,请确定该超市的位置P.小区CPAOBMN 2.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.ABCEFD((((3412P 3.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.证明:∵OD平分线∠POQ,∴∠AOD=∠BOD.在△AOD与△BOD中,∵OA=OB,∠AOD=∠BOD,OD=OD,∴△AOD≌△BOD.∴∠ADO=∠BDO.∵CM⊥AD,CN⊥BD,∴CM=CN. 4.如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.GHMABCFED 拓展思维5.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置. P1P2P3P4l1l2l3 课堂小结角平分线的判定定理内容角的内部到角两边距离相等的点在这个角的平分线上作用判断一个点是否在角的平分线上结论三角形的角平分线相交于内部一点

资料: 2159

进入主页

人气:

10000+的老师在这里下载备课资料