人教版八年级上册14.1整式的乘法(第5课时)同步课件
加入VIP免费下载

人教版八年级上册14.1整式的乘法(第5课时)同步课件

ID:1247864

大小:2.77 MB

页数:24页

时间:2022-10-24

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第十四章整式的乘法与因式分解14.1整式的乘法第5课时 1.理解并掌握多项式与多项式的乘法运算法则.(重点)2.能够运用多项式与多项式的乘法运算法则进行计算.(难点)学习目标 导入新课复习引入1.如何进行单项式与多项式乘法的运算?②再把所得的积相加.①将单项式分别乘以多项式的各项,2.进行单项式与多项式乘法运算时,要注意什么?①不能漏乘:即单项式要乘遍多项式的每一项②去括号时注意符号的确定. 讲授新课互动探究问题1某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区增长了n米,加宽了b米,请你计算这块林区现在的面积.ambn多项式乘多项式 manambnbambn你能用不同的形式表示所拼图的面积吗?这块林区现在长为(m+n)米,宽为(a+b)米(m+n)(a+b)m(a+b)+n(a+b)ma+mb+na+nb方法一:方法二:方法三: 由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有:(m+n)(a+b)=ma+mb+na+nb如何进行多项式与多项式相乘的运算?实际上,把(a+b)看成一个整体,有:=ma+mb+na+nb(m+n)(a+b)=m(a+b)+n(a+b)(m+n)X=mX+nX?若X=a+b,如何计算? 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.知识要点多项式乘以多项式1234(a+b)(m+n)=am1234+an+bm+bn多乘多顺口溜:多乘多,来计算,多项式各项都见面,乘后结果要相加,化简、排列才算完. 典例精析例1计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).解:(1)原式=3x·x+2·3x+1·x+1×2=3x2+6x+x+2(2)原式=x·x-xy-8xy+8y2结果中有同类项的要合并同类项.=3x2+7x+2;计算时要注意符号问题.=x2-9xy+8y2; (3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.需要注意的几个问题:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.注意计算时不能漏乘. 例2先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.当a=-1,b=1时,解:原式=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.原式=-8+2-15=-21. 例3已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a、b的值.解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2,∵积不含x2的项,也不含x的项, 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答. 练一练:计算(1)(x+2)(x+3)=__________;(2)(x-4)(x+1)=__________;(3)(y+4)(y-2)=__________;(4)(y-5)(y-3)=__________.x2+5x+6x2-3x-4y2+2y-8y2-8y+15由上面计算的结果找规律,观察填空:(x+p)(x+q)=___2+______x+_______.x(p+q)pq 例4已知等式(x+a)(x+b)=x2+mx+28,其中a、b、m均为正整数,你认为m可取哪些值?它与a、b的取值有关吗?请你写出所有满足题意的m的值.解:由题意可得a+b=m,ab=28.∵a,b均为正整数,故可分以下情况讨论:①a=1,b=28或a=28,b=1,此时m=29;②a=2,b=14或a=14,b=2,此时m=16;③a=4,b=7或a=7,b=4,此时m=11.综上所述,m的取值与a,b的取值有关,m的值为29或16或11. 当堂练习3.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足(  )A.a=bB.a=0C.a=-bD.b=0C1.计算(x-1)(x-2)的结果为(  )A.x2+3x-2B.x2-3x-2C.x2+3x+2D.x2-3x+2D2.下列多项式相乘,结果为x2-4x-12的是(  )A.(x-4)(x+3)B.(x-6)(x+2)C.(x-4)(x-3)D.(x+6)(x-2)B 4.判别下列解法是否正确,若错,请说出理由.解:原式 解:原式 5.计算:(1)(x−3y)(x+7y);(2)(2x+5y)(3x−2y).解:(1)(x−3y)(x+7y),+7xy−3yx−=x2+4xy-21y2;21y2(2)(2x+5y)(3x−2y)==x22x•3x−2x•2y+5y•3x−5y•2y=6x2−4xy+15xy−10y2=6x2+11xy−10y2. 6.化简求值:(4x+3y)(4x-3y)+(2x+y)(3x-5y),其中x=1,y=-2.解:原式=当x=1,y=-2时,原式=22×1-7×1×(-2)-14×(-2)2=22+14-56=-20. 7.解方程与不等式:(1)(x-3)(x-2)+18=(x+9)(x+1);(2)(3x+6)(3x-6)<9(x-2)(x+3).解:(1)去括号,得x2-5x+6+18=x2+10x+9,移项合并,得15x=15,解得x=1;(2)去括号,得9x2-36<9x2+9x-54,移项合并,得9x>18,解得x>2. 8.小东找来一张挂历画包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?八年级(上)姓名:____________数学cba拓展提升 abcmbm面积:(2m+2b+c)(2m+a) 解:(2m+2b+c)(2m+a)=4m2+2ma+4bm+2ab+2cm+ca.答:小东应在挂历画上裁下一块(4m2+2ma+4bm+2ab+2cm+ca)平方厘米的长方形. 课堂小结多项式×单项式运算法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加(a+b)(m+n)=am+an+bm+bn注意不要漏乘;正确确定各符号;结果要最简实质上是转化为单项式×多项式的运算(x-1)2在一般情况下不等于x2-12.

资料: 2159

进入主页

人气:

10000+的老师在这里下载备课资料