2022-2023年青岛版数学九年级上册3.6《弧长及扇形面积的计算》课时练习一、选择题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A.π B.2π C.3π D.6π2.若120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( )A.3B.4C.9D.183.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°4.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为( )A.1.5π B.πp C.2π D.3π5.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为( )A.π B.2π C.2π D.4π6.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()
A.甲先到B点B.乙先到B点C.甲、乙同时到BD.无法确定7.如图,PA、PB是⊙O切线,切点分别为A、B,若OA=2,∠P=60°,则长为()A.πB.πC.D.8.如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为()A.6π﹣4B.6π﹣8C.8π﹣4D.8π﹣89.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过图形面积为()A.πB.πC.6πD.π10.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到点A′的位置,则图中阴影部分的面积为( )A.πB.2πC.D.4π
二、填空题11.圆心角为120°的扇形的弧长为π,这个扇形的面积为 .12.如图,正方形ABCD的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm长为半径画弧BD,则图中阴影部分的面积为 .13.挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是 cm.14.如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=4cm.则图中阴影部分面积为 .(结果保留π)15.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为.16.如图,以A为圆心AB为半径作扇形ABC,线段AC交以AB为直径的半圆弧的中点D,若AB=4,则阴影部分图形的面积是_______(结果保留π).
三、解答题17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.18.如图,已知以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较与的长.
19.如图,已知AB是⊙O的直径,点C.答案为:D;在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.20.如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.(2)求阴影部分的面积.
参考答案1.C.2.C3.C;4.A5.B.6.C7.C8.A;9.B.10.B.11.答案为:π.12.答案为:cm213.答案为:15π.14.答案为:πcm2.15.答案为:10πcm2.16.答案为:2π﹣4.17.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED.(2)∵OC⊥AD,∴=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴==2π.18.解:的长等于的长.
19.解:(1)连接OC,∵∠D和∠AOC分别是弧AC所对的圆周角和圆心角,∠D=60°,∴∠AOC=2∠D=120°,∵OE⊥AC,∴∠AOE=∠COE=0.5∠AOC=60°,∠OAE=30°.∵AB是⊙O的直径,AB=6,∴OA=3,∴OE=0.5OA=1.5;(2)∵OE=0.5OA,∴EF=OE.∵OE⊥AC,∴∠AEF=∠CEO=90°,AE=CE.∴△AEF≌△CEO.∴S阴影=S扇形COF=1.5π.20.解:(1)DE与半圆O相切.证明:过点O作OF⊥DE,垂足为F.在Rt△ADE中,AD=2cm,AE=1.5cm,∴DE=2.5cm.连接OE,OD.由题意,知OB=OC=1cm,BE=AB-AE=0.5cm.∵S四边形BCDE=S△DOE+S△BOE+S△CDO,∴×(0.5+2)×2=×2.5·OF+×1×0.5+×1×2,∴OF=1cm,即OF的长等于半圆O的半径.又∵OF⊥DE,∴DE与半圆O相切.(2)阴影部分的面积=正方形ABCD的面积-△ADE的面积-半圆的面积=2×2-××2-×π×12=(cm2).即阴影部分的面积为cm2.