2022-2023年冀教版数学八年级上册17.3《勾股定理》课时练习一、选择题1.在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=72.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为( )A.30mB.40mC.50mD.70m3.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( )A.169 B.119 C.13 D.1444.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米 B.5米 C.6米 D.7米5.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是( )A.2 B.4 C.5 D.76.如图,在正方形网格中,每个正方形的边长为1,则在△ABC中,边长为无理数的边数是( )A.0 B.1 C.2 D.3
7.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)8.有下面的判断:①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=90°,则a2+b2=c2;③若△ABC中,a2-b2=c2,则△ABC是直角三角形;④若△ABC是直角三角形,则(a+b)(a-b)=c2.其中判断正确的有( )A.4个 B.3个 C.2个 D.1个9.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形10.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数( )A.6 B.7 C.8 D.9二、填空题11.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为 .12.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是 .13.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.14.如果一梯子底端离建筑物9m远,那么15
m长的梯子可达到建筑物的高度是_______m.15.如图,一个直立的油桶高0.8米,在顶部的一个开口中将一根长1米的木杆斜着插入桶内,上端正好与桶面相平,抽出后看到杆上油浸到部分长0.8m,则油桶内油面的高度是 m. 16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为cm.三、作图题17.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画图形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.
四、解答题18.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC的长.20.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.
21.为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
参考答案1.D2.C3.A4.D5.A6.D.7.C.8.C 9.C.10.C.11.答案为:60.12.答案为:120cm2.13.答案为:24.14.答案为:12.15.答案为:0.64; 16.答案为:7.17.(1)三边长分别为3,4,5(如图1)(2)三边长分别为,2,(如图2)(3)画一个边长为的正方形(如图3)18.解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;
②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD=9,∴BC=CD+BD=5+9=14.20.解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.
21.解:由题意可得:设AE=xkm,则EB=(2.5﹣x)km,∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,∴AC2+AE2=BE2+DB2,∴1.52+x2=(2.5﹣x)2+12,解得:x=1.答:图书室E应该建在距点A1km处,才能使它到两所学校的距离相等.