《第五章一元一次方程》知识归纳(一)、方程的有关概念1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么.(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(四)、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数).2.去括号(按去括号法则和分配律).3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号).4.合并(把方程化成ax=b(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=.一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(1)解方程:解所列的方程,求出未知数的值.(2)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.二、一元一次方程的实际应用1.和、差、倍、分问题:增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2. 等积变形问题: (1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积. (2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=hr2p ②长方体的体积 V=长×宽×高=abc 3. 工程问题: 工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=14.行程问题: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.5. 商品销售问题 (1)商品利润率=商品利润/商品成本价×100% (2)商品销售额=商品销售价×商品销售量 (3)商品的销售利润=(销售价-成本价)×销售量 (4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率 (5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 6.储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息/本金×100%7.数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.