《第2章实数》 一、选择题1.25的平方根是( )A.5B.﹣5C.±D.±52.下列说法错误的是( )A.无理数的相反数还是无理数B.无限小数都是无理数C.整数、分数统称有理数D.实数与数轴上的点一一对应3.下列各组数中互为相反数的是( )A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与4.在下列各数中无理数有( )﹣0.333…,,,﹣π,3π,3.1415,2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C.5个D.6个5.下列说法错误的是( )A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根6.下列各式中已化为最简式的是( )A.B.C.D.7.下列结论正确的是( )A.B.C.D.8.一个长方形的长与宽分别是6、3,它的对角线的长可能是( )A.整数B.分数C.有理数D.无理数9.要使二次根式有意义,字母x必须满足的条件是( )A.x≥1B.x>﹣1C.x≥﹣1D.x>110.()2的平方根是x,64的立方根是y,则x+y的值为( )A.3B.7C.3或7D.1或7第13页(共13页)
11.若与都有意义,则a的值是( )A.a>0B.a≤0C.a=0D.a≠012.当的值为最小值时,a的取值为( )A.﹣1B.0C.D.1 二、填空题:13.36的平方根是______;的算术平方根是______.14.8的立方根是______;=______.15.的相反数是______,绝对值等于的数是______.16.比较大小:______2;若a>2,则|2﹣a|=______.17.一个正数n的两个平方根为m+1和m﹣3,则m=______,n=______.18.的立方根与﹣27的立方根的差是______;已知+=0,则(a﹣b)2=______. 三、解答题19.化简:(1)+﹣;(2)(3)3﹣﹣;(4)+(1﹣)0;(5)(﹣)(+)+2(6)(+﹣ab)•(a≥0,b≥0).20.求x的值:(1)2x2=8(2)(2x﹣1)3=﹣8.21.一个长方形的长与宽之比为5:3,它的对角线长为cm,求这个长方形的长与宽(结果保留2个有效数字).第13页(共13页)
22.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用﹣1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是a,5﹣的整数部分是b,求a+b的值. 第13页(共13页)
《第2章实数》参考答案与试题解析 一、选择题1.25的平方根是( )A.5B.﹣5C.±D.±5【考点】平方根.【分析】根据平方根的定义和性质即可得出答案.【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:D.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键. 2.下列说法错误的是( )A.无理数的相反数还是无理数B.无限小数都是无理数C.整数、分数统称有理数D.实数与数轴上的点一一对应【考点】实数与数轴;实数.【分析】A、根据相反数和无理数的定义进行分析、判断;B、根据无理数的定义解答;C、由有理数的分类进行分析、判断;D、由实数与数轴的关系进行分析.【解答】解:A、无理数a与它的相反数﹣a只是符号不同,但都还是无理数,故本选项正确;B、无限不循环小数叫做无理数;故本选项错误;C、有理数包括整数和分数;故本选项正确;D、实数与数轴上的点是一一对应关系;故本选项正确;故选B.【点评】本题考查了实数与数轴、实数的有关知识点.注意,无理数的定义是指“无限不循环小数”而不是“无限小数”或者“小数”. 3.下列各组数中互为相反数的是( )第13页(共13页)
A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、是同一个数,故B错误;C、是同一个数,故C错误;D、是同一个数,故D错误;故选:A.【点评】本题考查了实数的性质,利用了只有符号不同的两个数互为相反数. 4.在下列各数中无理数有( )﹣0.333…,,,﹣π,3π,3.1415,2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C.5个D.6个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:=2,所给数据中,无理数有:,﹣π,3π,76.0123456…,共4个.故选B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式. 5.下列说法错误的是( )A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根【考点】平方根;立方根.【专题】计算题.【分析】利用平方根及立方根定义判断即可得到结果.【解答】解:A、1的平方根为±1,错误;B、﹣1的立方根是﹣1,正确;第13页(共13页)
C、是2的平方根,正确;D、﹣是的平方根,正确;故选A【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键. 6.下列各式中已化为最简式的是( )A.B.C.D.【考点】最简二次根式.【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【解答】解:A、=,不是最简二次根式;B、=2,不是最简二次根式;C、是最简二次根式;D、=11,不是最简二次根式.故选C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 7.下列结论正确的是( )A.B.C.D.【考点】算术平方根.【分析】根据平方,算术平方根分别进行计算,即可解答.【解答】解:A.因为,故本选项正确;B.因为=3,故本选项错误;C.因为,故本选项错误;D.因为,故本选项错误;第13页(共13页)
故选A.【点评】本题考查算术平方根,解决本题的关键是注意平方的计算以及符号问题. 8.一个长方形的长与宽分别是6、3,它的对角线的长可能是( )A.整数B.分数C.有理数D.无理数【考点】勾股定理.【专题】计算题.【分析】长方形的长、宽和对角线,构成一个直角三角形,可用勾股定理,求得对角线的长,再进行选择即可.【解答】解:∵==3,∴对角线长是无理数.故选D.【点评】本题考查了长方形性质及勾股定理的应用,考查了利用勾股定理解直角三角形的能力以及实数的分类. 9.要使二次根式有意义,字母x必须满足的条件是( )A.x≥1B.x>﹣1C.x≥﹣1D.x>1【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数是非负数作答.【解答】解:根据二次根式的意义,被开方数x+1≥0,解得x≥﹣1.故选:C.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 10.()2的平方根是x,64的立方根是y,则x+y的值为( )A.3B.7C.3或7D.1或7【考点】立方根;平方根.【分析】分别求出x、y的值,再代入求出即可.第13页(共13页)
【解答】解:∵(﹣)2=9,∴()2的平方根是±3,即x=±3,∵64的立方根是y,∴y=4,当x=3时,x+y=7,当x=﹣3时,x+y=1.故选D.【点评】本题考查了平方根和立方根的应用,关键是求出xy的值. 11.若与都有意义,则a的值是( )A.a>0B.a≤0C.a=0D.a≠0【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0可知:若与都有意义,则,由此可求a的值.【解答】解:若与都有意义,则,故a=0.故选C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 12.当的值为最小值时,a的取值为( )A.﹣1B.0C.D.1【考点】算术平方根.【分析】由于≥0,由此得到4a+1=0取最小值,这样即可得出a的值.【解答】解:取最小值,即4a+1=0.得a=,故选C.【点评】本题考查的是知识点有:算术平方根恒大于等于0,且只有最小值,为0;没有最大值.第13页(共13页)
二、填空题:13.36的平方根是 ±6 ;的算术平方根是 2 .【考点】算术平方根;平方根.【分析】根据平方根和算术平方根的定义求出即可.【解答】解:36的平方根是±=±6,∵=4,∴的算术平方根是2,故答案为:±6,2.【点评】本题考查了对平方根和算术平方根的应用,主要考查学生的理解能力和计算能力. 14.8的立方根是 2 ;= ﹣3 .【考点】立方根.【分析】根据立方根的定义解答即可.【解答】解:∵23=8,∴8的立方根是2;=﹣3.故答案为:2;﹣3.【点评】本题考查了立方根的定义,熟记概念是解题的关键. 15.的相反数是 ﹣ ,绝对值等于的数是 .【考点】实数的性质.【分析】由题意根据相反数的定义及绝对值的性质进行求解.【解答】解:的相反数是:﹣,设x为绝对值等于,∴|x|=,∴x=±,故答案为:﹣,.【点评】此题主要考查相反数的定义及绝对值的性质,比较简单.第13页(共13页)
16.比较大小: > 2;若a>2,则|2﹣a|= a﹣2 .【考点】实数大小比较;实数的性质.【专题】推理填空题.【分析】首先应用放缩法,利用,判断出>2;然后根据a>2,判断出2﹣a的正负,即可求出|2﹣a|的值是多少.【解答】解:∵,∴>=2;∵a>2,∴2﹣a<0,∴|2﹣a|=a﹣2.故答案为:>、a﹣2.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,注意放缩法的应用.(2)此题还考查了绝对值的含义和求法,要熟练掌握,注意判断出2﹣a的正负. 17.一个正数n的两个平方根为m+1和m﹣3,则m= 1 ,n= 4 .【考点】平方根.【专题】计算题.【分析】根据正数的平方根有2个,且互为相反数列出关于m的方程,求出方程的解即可得到m的值,进而求出n的值.【解答】解:根据题意得:m+1+m﹣3=0,解得:m=1,即两个平方根为2和﹣2,则n=4.故答案为:1;4【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.的立方根与﹣27的立方根的差是 5 ;已知+=0,则(a﹣b)2= 25 .【考点】实数的运算;非负数的性质:算术平方根.【分析】首先把化简,然后再计算出8和﹣27的立方根,再求差即可;第13页(共13页)
根据算术平方根具有非负性可得a﹣2=0,b+3=0,计算出a、b的值,进而可得答案.【解答】解:=8,8的立方根是2,﹣27的立方根是﹣3,2﹣(﹣3)=5.故答案为:5;∵+=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,(a﹣b)2=25.故答案为:25.【点评】此题主要考查了实数的运算,关键是掌握平方根、立方根、算术平方根的定义. 三、解答题19.化简:(1)+﹣;(2)(3)3﹣﹣;(4)+(1﹣)0;(5)(﹣)(+)+2(6)(+﹣ab)•(a≥0,b≥0).【考点】二次根式的混合运算;零指数幂.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把根号内的数利用平方差公式变形,然后根据二次根式的乘法法则运算;(3)先把各二次根式化为最简二次根式,然后合并即可;(4)先根据零指数幂的意义运算,再把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(5)利用平方差公式计算;第13页(共13页)
(6)先把各二次根式化为最简二次根式,然后进行二次根式的乘法运算.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=13×11=143;(3)原式=6﹣3﹣=;(4)原式=+1=5+1=6;(5)原式=5﹣7+2=0;(6)原式=(a+b﹣ab)=a2b+ab2﹣ab.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂. 20.求x的值:(1)2x2=8(2)(2x﹣1)3=﹣8.【考点】立方根;平方根.【分析】(1)利用解方程的步骤求解,注意解的最后一步利用平方根来求解;(2)利用立方根的定义可得出x的一元一次方程,再求解即可.【解答】解:(1)系数化为1可得:x2=4,两边开方得:x=±2;(2)由立方根的定义可得:2x﹣1=﹣2,解得x=﹣.【点评】本题主要考查平方根和立方根的定义及求法,正确掌握平方根和立方根的定义是解题的关键. 21.一个长方形的长与宽之比为5:3,它的对角线长为cm,求这个长方形的长与宽(结果保留2个有效数字).【考点】一元二次方程的应用;实数的运算;勾股定理.【专题】几何图形问题.【分析】一个长方形的长与宽之比为5:3,设长为5xcm,则宽为3xcm,根据对角线长,用勾股定理即可列出方程,求出长方形的长和宽,再进行估算.【解答】解:设长为5xcm,则宽为3xcm,用勾股定理得(5x)2+(3x)2=()2,第13页(共13页)
∴25x2+9x2=68,∴34x2=68,∴x2=2,即x=或x=﹣(舍去),∴长为5×≈7.1(cm),宽为3×≈4.2(cm),答:长方形的长为7.1cm,宽为4.2cm.【点评】这类根据长形的对角线与直角边构成直角三角形,利用勾股定理化为求一元二次方程的解的问题,求解舍去不符合条件的解即可. 22.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用﹣1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是a,5﹣的整数部分是b,求a+b的值.【考点】估算无理数的大小.【分析】根据题目中的方法,估计的大小,求出a、b的值,再把a,b的值相加即可得出答案.【解答】解:∵4<5<9,∴2<<3,∴7<5+<8,∴a=﹣2.又∵﹣2>﹣>﹣3,∴5﹣2>5﹣>5﹣3,∴2<5﹣<3,∴b=2,∴a+b=﹣2+2=.【点评】此题考查了估算无理数的大小,常见的方法是夹逼法,解题关键是估算无理数的整数部分和小数部分. 第13页(共13页)