第二章有理数及其运算7有理数的乘法(第1课时有理数的乘法法则)
1.掌握有理数的乘法法则并能进行熟练地运算.(重点)2.掌握多个有理数相乘的积的符号法则.(难点)学习目标
情境引入李大爷经营了一家餐馆,因使用地沟油,每天亏损100元,下图是他的餐馆九月份的帐单,你能算出他亏损了多少吗?A.(-100)+30B.(-100)×30导入新课
如图,一只蜗牛沿直线l爬行,它现在的位置在l上的点O.lO1.如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm应该记为.2.如果3分钟以后记为+3分钟,那么3分钟以前应该记为.-2cm-3分钟合作探究讲授新课有理数的乘法运算知识点1
探究120264l结果:3分钟后在l上点O边cm处表示:.右6(+2)×(+3)=6(1)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置?规定:向左为负,向右为正.现在前为负,现在后为正.
(2)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置?探究2-6-40-22l结果:3分钟后在l上点O边cm处左6表示:.(-2)×(+3)=-6
2×3=6(-2)×3=-6一个因数换成相反数积是原来的积的相反数发现:两数相乘,把一个因数换成它的相反数,所得的积是原来积的相反数.议一议
2×3=62×(-3)=-6(-2)×(-3)=6相反数相反数相反数相反数猜一猜
(3)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置?探究32-6-40-22l结果:3分钟前在l上点O边cm处表示:.(+2)×(-3)=-6左6验证了前面猜想
(4)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置?探究420264-2l结果:3钟分前在l上点O边cm处右6表示:.(-2)×(-3)=+6
分组讨论:(1)2×3=6(2)(-2)×(-3)=6(3)(-2)×3=-6(4)2×(-3)=-6正数×正数负数×负数负数×正数=正数=正数=负数=负数正数×负数发现:两数相乘,同号得正,异号得负,并把绝对值相乘.
答:结果都是仍在原处,即结果都是,若用式子表达:探究5(5)原地不动或运动了零次,结果是什么?0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.零O发现:任何数与0相乘,积仍为0.
两数相乘,综合如下:(1)2×3=6(2)(-2)×(-3)=6(3)(-2)×3=-6(4)2×(-3)=-6(5)3×0=0,0×3=0(6)(-3)×0=0,0×(-2)=0同号相乘积为正数异号相乘积为负数如果有一个因数是0时,所得的积还是0.
两数的符号特征积的符号积的绝对值同号异号一个因数为0有理数乘法法则:+-绝对值相乘得0先定符号,再定绝对值!归纳总结
讨论:(1)若a<0,b>0,则ab0;(2)若a<0,b<0,则ab0;(3)若ab>0,则a、b应满足什么条件?(4)若ab<0,则a、b应满足什么条件?<>a、b同号a、b异号
1.先确定下列积的符号,再计算结果:(1)5×(-3)(2)(-4)×6(3)(-7)×(-9)(4)0.5×0.7积的符号为负积的符号为负积的符号为正积的符号为正=-15=-24=63=0.35做一做
2.判断下列方程的解是正数、负数、还是0:(1)4x=-16(2)-3x=18(3)-9x=-36(4)-5x=0正数负数0负数
例1计算:(1)9×6;(2)(−9)×6;解:(1)9×6(2)(−9)×6=+(9×6)=−(9×6)=54;=−54;(3)3×(-4)(4)(-3)×(-4)=12;有理数乘法的求解步骤:先确定积的符号再确定积的绝对值(3)3×(-4);(4)(-3)×(-4)=−(3×4)=+(3×4)=−12;典例精析
判断下列各式的积是正的还是负的?2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)7.8×(-8.1)×0×(-19.6)负正负正零几个有理数相乘,因数都不为0时,积的符号怎样确定?有一因数为0时,积是多少?议一议
1.几个不等于零的数相乘,积的符号由负因数的个数决定.2.当负因数有_____个时,积为负;3.当负因数有_____个时,积为正.4.几个数相乘,如果其中有因数为0,_________奇数偶数积等于0奇负偶正归纳总结
例2计算:解:(1)原式(2)原式先确定积的符号再确定积的绝对值
做一做:计算:(1)×2; (2)(-)×(-2)解:(1)×2=1(2)(-)×(-2)=1观察上面两题有何特点?结论:有理数中仍然有:乘积是1的两个数互为倒数.倒数知识点2
倒数的定义我们把乘积为1的两个有理数称为互为倒数,其中的一个数是另一个数的倒数.注意:1.正数的倒数是正数,负数的倒数是负数;2.分数的倒数是分子与分母颠倒位置;3.求小数的倒数,先化成分数,再求倒数;4.0没有倒数.知识要点
1的倒数为-1的倒数为的倒数为-的倒数为的倒数为-的倒数为1-13-3-3-30的倒数为零没有倒数思考:a的倒数是对吗?(a≠0时,a的倒数是)练一练
-3-572.557532.52相反数、倒数及绝对值的区别运算
例3已知a与b互为相反数,c与d互为倒数,m的绝对值为6,求-cd+|m|的值.解:由题意得a+b=0,cd=1,|m|=6.∴原式=0-1+6=5;方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及|m|=6,再代入所求代数式进行计算.故-cd+|m|的值为5.
例4用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登3km后,气温有什么变化?解:(-6)×3=-18答:气温下降18℃.有理数的乘法的应用知识点3
被乘数乘数积的符号积的绝对值结果-57156-30-64-251.填空题-35-35+9090+180180-100-1002.计算(1)(2)(3)随堂练习
3.填空(用“>”或“<”号连接):(1)如果a<0,b<0,那么ab___0;(2)如果a<0,b>0,那么ab___0;4.若ab>0,则必有()A.a>0,b>0B.a0或a