平方根一、选择题1.的平方根是()A.-0.7B.±0.7C.0.7D.0.49答案:B知识点:平方根解析:解答:∵(-0.7)2=(±0.7)2,∴(-0.7)2的平方根是±0.7.故答案为:B.分析:本题根据平方根的定义解答即可.注意一个正数有两个平方根,它们互为相反数.2.若-=,则a的值是()A.B.-C.±D.-答案:B知识点:立方根解析:解答:根据题意,-=即=故可知a=-故答案为:B.分析:本题根据立方根的定义,可将根号外的符号移入根号内,结合题意即可求出,属于基础题.3.有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A.1B.2C.3D.4
答案:B知识点:平方根解析:解答::(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B.分析:此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.4.若=25,=3,则a+b=()A.-8B.±8C.±2D.±8或±2答案:D知识点:平方根;绝对值解析:解答:∵a2=25,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=5+3=8,当a=5,b=-3时,a+b=5-3=2,当a=-5,b=3时,a+b=-5+3=-2,当a=-5,b=-3时,a+b=-5-3=-8,综上所述,a+b=±8或±2.故答案为:D.分析:本题根据有理数的乘方和绝对值的性质分别求出a、b,然后分类讨论.难点在于分情况讨论.5.81的平方根是( )A.±3B.±9C.3D.9答案:B
知识点:平方根解析:解答:∵=81,∴81的平方根是±9.故选B.分析:本题根据平方根的定义进行解答即可,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.6.若2m-4与3m-1是同一个数的平方根,则m为( )A.-3 B.1 C.-1 D.-3或1答案:D知识点:平方根解析:解答:依题意得:2m-4=-(3m-1)或2m-4=3m-1,解得m=1或-3;∴m的值为1或-3.故答案为D.分析:由于同一个数的两个平方根互为相反数,由此可以得到2m-4=-(3m-1),解方程即可求解.7.下列说法正确的是( )A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身答案:D知识点:平方根解析:解答:
A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.分析:本题根据平方根的定义即可解答.用排除法作答,考查了考生对正负数的立方根理解.8.的平方根是( )A.6B.±6C.D.±答案:D知识点:平方根解析:解答:∵=6,∴6的平方根为±故选D.分析:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一定先计算出的值,比较容易出错.9.在数-5,0,,,,中有平方根的个数是( )A.1B.2C.3D.4答案:D知识点:平方根解析:根据平方根的被开方数是非负数,可得答案.注意开平方的被开方数是非负数.解答::∵0=0,>0,>0,=9>0故选:D.分析:10.已知+=0,则的平方根是( )A.±B.C.D.±答案:A知识点:平方的非负性;绝对值的非负性;平方根
解析:解答:根据题意得,b-4=0,a-1=0,解得a=1,b=4,所以,的平方根是,故选A.分析:根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11.一个数的平方等于16,则这个数是( )A.+4B.-4C.±4D.±8答案:C知识点:平方根解析:解答:∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.故选C.分析:此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.的平方根是( )A.-5B.±5C.5D.25答案:B知识点:有理数的乘方;平方根解析:解答:∵(-5)2=(±5)2,∴(-5)2的平方根是±5.故选B.分析:
本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.下列说法中错误的是()A.0的算术平方根是0B.36的平方根为±6C.=5D.-4的算术平方根是-2答案:D知识点:平方根;算术平方根解析:解答:A、0的算术平方根是0,说法正确,故本选项错误;B、36的平方根为±6,说法正确,故本选项错误;C、=5,说法正确,故本选项错误;D、-4没有算术平方根,说法错误,故本选项正确.故选D.分析:根据平方根、算术平方根的定义,结合选项即可得出答案.14.下列语句中正确的是()A.的平方根是9B.的平方根是±9C.的算术平方根是±3D.9的算术平方根是3答案:D知识点:平方根;算术平方根解析:解答:A、的平方根是±3,故本选项错误;B、的平方根是±3,故本选项错误;C、的算术平方根是3,故本选项错误;D、9的算术平方根是3,故本选项正确;故选D.分析:求出=9,再求出9的平方根和算术平方根,即可得出选项.
15.下面说法正确的是()A.4是2的平方根B.2是4的算术平方根C.0的算术平方根不存在D.-1的平方的算术平方根是-1答案:B知识点:平方根;算术平方根解析:解答:A、4不是2的平方根,故本选项错误;B、2是4的算术平方根,故本选项正确;C、0的算术平方根是0,故本选项错误;D、-1的平方为1,1的算术平方根为1,故本选项错误.故选B.分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.二.填空题16.一个正方形的面积是6平方厘米,则这个正方形的边长等于厘米.答案:4知识点:平方根解析:解答:设正方形的边长是x平方厘米,则x2=16,∵x>0,∴x=4,故答案为:4.分析:17.若一个数的算术平方根是8,则这个数是_____.答案:64知识点:算术平方根解析:
解答:∵一个数的算术平方根是8,∴这个数是=64.故答案为:64.分析:根据算术平方根的定义可以得到这个数就是8的平方,由此即可得到答案.18.81的平方根是_____;的算术平方根是_____.答案:±9;2知识点:平方根;算术平方根解析:解答:81的平方根是=±9;的算术平方根是4,4的算术平方根即为2;故填±9;2.分析:前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简,然后即可求出其结果的算术平方根.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是_____.答案:知识点:算术平方跟解析:解答:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.分析:首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.20.已知:若≈1.910,≈6.042,则≈_____.答案:604.2知识点:算术平方根解析:解答:根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.解:若≈1.910,≈6.042,则≈604.2,
故答案为:604.2.分析:三.解答题.21.已知3a-2的算术平方根是4,2a+b-2的算术平方根是3,求a、b的值.答案:a=6,b=-1.知识点:算术平方根解析:解答:∵16的算术平方根是4,∴3a-2=16,解得:a=6,∵9的算术平方根是3,a=6,∴2×6+b-2=9,解得:b=-1,可得:a=6,b=-1. 分析:根据算术平方根的定义得出3a-2=16,以及2a+b-2=9进而求出a,b的值即可.22.我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?答案:0.3m知识点:算术平方根解析:解答:一块地砖的面积为:21.6÷240=0.09m2,∴每块地砖的边长应为=0.3m.分析:先求出一块地砖的面积,再根据算术平方根的定义解答.23.判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.答案:略知识点:平方根解析:解答:(1)有平方根,﹣3的平方是9;
(2)有平方根,0是非负数;(3)没有平方根,负数没有平方根;(4)没有平方根,负数没有平方根;(5)a等于零时,有平方根,a≠0时没有平方根,负数没有平方根;(6)有平方根,被开方数是大或等于1的数.分析:本题考查了平方根,根据被开方是非负数可得答案.注意被开方数是非负数.24.求下列各数的平方根:(1)121;(2)0.01;(3)2;(4)(﹣13)2;(5)﹣(﹣4)3.答案:(1)±11;(2)±0.1;(3);(4)±13(5)±8.知识点:平方根解析:解答:(1)=±11;(2)=±0.1;(3)==;(4)=±13;(5)==±8.分析:本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.25.已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.答案:13知识点:平方根;代数式求值解析:解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.分析:根据开方与平方是互逆运算,求出2m+2的值,与3m+n+1的值,然后两式联立求出m、n的值,再代入进行计算即可求解.