数学华东师大9上第24章 解直角三角形单元考试题含答案
加入VIP免费下载

数学华东师大9上第24章 解直角三角形单元考试题含答案

ID:1252672

大小:389 KB

页数:13页

时间:2022-11-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
华师大版九年级上册第24章解直角三角形单元考试题姓名:     ,成绩:    ;一、选择题(4×12=48分)1、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为(  ) A.3cmB.6cmC.cmD.cm2、如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为(  )CBAA.B.C.D.3、在Rt△ABC中,∠C=90°,则表示(  )A.sinAB.cosAC.sinBD.以上都不4、小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°的角的正切值是()A.+1B.+1C.2.5D.5、在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A、B、C、D、 6、已知∠A为锐角,且sinA≤,则()A、0°≤A≤60°B、60°≤A<90°  C、0°<A≤30°D、30°≤A≤90°7、在Rt△ABC中,斜边AB的长为m,∠A=55°,则直角边BC的长是(  )A.msin55°B.mcos55°C.D.8、一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要(  )A.米2B.米2C.(4+)米2D.(4+4tanθ)米29、在△ABC中,若,,则这个三角形一定是( )A、锐角三角形; B、直角三角形; C、钝角三角形; D、等腰三角形.10、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.下列说法正确的是( )A、AB的长为400米;        B、AF的长为10米; C、填充的土石方为19200立方米;    D、填充的土石方为384立方米11、如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为(  )A.B.C.D.12、如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为(  )(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45) A.30.6B.32.1C.37.9D.39.4二、填空题(4×6=24分)13、直角三角形斜边上的中线长是2.5,一直角边的长是3,则此直角三角形的面积为    .14、如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.15、若某人沿坡度i=3:4的斜坡前进10m,则他所在的位置比原来的的位置升高m。616、已知P(2,3),OP与x轴所夹锐角为a,则tana=_______.17、观察下列等式①sin30°=cos60°=②sin45°=cos=45°=③sin60°=cos30°=根据上述规律,计算sin2a+sin2(90°﹣a)=  .18、我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.飞机的飞行距离BD=(结果保留根号).三、解答题(7×2=14分) 19、计算:+tan30°·sin60°20、如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长。四、解答题(10×4=40分)22、如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上)⑴求教学楼AB的高度;⑵学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)23、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响. (1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?24、如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请讲下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为  米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?五、解答题(12×2=24分)25、在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由. 26、已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围. 华师大版九年级上册第24章解直角三角形单元考试题的答案一、选择题DBABDCADACCD二、填空题13、6,14、2,15、6,16、1.5,17、1,18、25+5三、解答题19、220、3+四、解答题22、⑴过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,∴tan22°=,=,x=12.即教学楼的高12m.⑵由(1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°= ,∴AE= ≈ ≈27.即AE之间的距离约为27m.23、(1)由点A作AD⊥BC于D,  则AD就为城市A距台风中心的最短距离  在Rt△ABD中,∠B=30º,AB=220,   ∴AD=AB=110.  由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.  故该城市会受到这次台风的影响.  (2)由题意知,当A点距台风中心不超过60千米时,  将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,  该城市都会受到这次台风的影响.  由勾股定理得  ∴EF=2DE=6.  因为这次台风中心以15千米/时的速度移动,  所以这次台风影响该城市的持续时间为小时.(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为12-=6.5级.24、(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长, ∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF﹣EF=15(﹣1)≈11.0;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=ADcos30°=×30=15.在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DMtan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6.答:建筑物GH高为45.6米.五、解答题25、(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)作线段BR⊥x轴于R,作线段CS⊥x轴于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km), ∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.26、(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC, ∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=ECtan∠DCB=EC=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1, ∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t),EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.

资料: 3260

进入主页

人气:

10000+的老师在这里下载备课资料