北师大版八年级上册数学(课件)2.3 立方根
加入VIP免费下载

北师大版八年级上册数学(课件)2.3 立方根

ID:1252855

大小:352.64 KB

页数:22页

时间:2022-11-09

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章实数2.3立方根 情境引入1.了解立方根的概念,会用根号表示一个数的立方根.(重点)2.能用开立方运算求某些数的立方根,了解开立方和立方互为逆运算.(重点,难点)学习目标 某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?情境引入导入新课 问题:要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?解:设正方体的棱长为x㎝,则这就是要求一个数,使它的立方等于27.因为所以x=3.正方体的棱长为3㎝.想一想(1)什么数的立方等于-8?(2)如果问题中正方体的体积为5cm3,正方体的边长又该是多少?-2讲授新课立方根的概念及性质知识点1 立方根的概念一般地,一个数的立方等于a,这个数就叫作a的立方根,也叫作a的三次方根.记作.立方根的表示一个数a的立方根可以表示为:根指数被开方数其中a是被开方数,3是根指数,3不能省略.读作:三次根号a, 填一填:根据立方根的意义填空:因为=8,所以8的立方根是( );因为()3=0.125,所以0.125的立方是( );因为()3=0,所以0的立方根是( );因为()3=-8,所以-8的立方根是();因为()3=,所以的立方().02-20-2 立方根的性质一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.立方根是它本身的数有1,-1,0;平方根是它本身的数只有0.知识要点 a叫作被开方数3叫作根指数每个数a都有一个立方根,记作,读作“三次根号a”.如:x3=7时,x是7的立方根.求一个数a的立方根的运算叫作开立方,a叫作被开方数注意:这个根指数3绝对不可省略.开立方及相关运算知识点2 典例精析例1求下列各数的立方根:(1)(2)(3)(4)(5) (5)-5的立方根是(3)(4)0.216;(5)-5. 求下列各式的值:体会:对于任何数a,a240-2-3探究1332___=334___=温馨提示:开立方与立方运算互为逆运算. 体会:对于任何数a,a8270-8-27探究2求下列各式的值: 体会:(1)求一个负数的立方根,可以先求出这个负数绝对值的立方根,然后再取它的相反数.(2)负号可从“根号内”直接移到“根号外”.求下列各式的值:(1);(2)探究3-0.2-0.2 平方根立方根性质正数0负数表示方法被开方数的范围两个,互为相反数一个,为正数00没有平方根一个,为负数平方根与立方根的区别和联系可以为任何数非负数 求下列各数的值:(1)0.5,(2)-4,(3)-4,(4)5,(5)16.练一练 例2求下列各式的值: ()1.判断下列说法是否正确.×(2)任何数的立方根都只有一个;()(3)如果一个数的立方根是这个数本身,那么这个数一定是零;()××(5)0的平方根和立方根都是0.()√(1)25的立方根是5;()(4)一个数的立方根不是正数就是负数;√随堂练习 2.比较3,4,的大小.解:33=27,43=64因为27

资料: 2159

进入主页

人气:

10000+的老师在这里下载备课资料