章末质量检测卷(一)
加入VIP免费下载

章末质量检测卷(一)

ID:1253231

大小:465 KB

页数:10页

时间:2022-11-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
章末质量检测卷(一)(时间:120分钟 满分:150分)一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是(  )A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等解析:选B 棱柱的侧面必须是平行四边形,侧棱长相等,但底面只需为多边形,且边长也不需要与侧棱长相等,故A、D不正确;球的表面不能为平面图形,故C不正确.2.棱锥的侧面和底面可以都是(  )A.三角形        B.四边形C.五边形D.六边形解析:选A 三棱锥的侧面和底面均是三角形.故选A.3.如图所示的组合体,其构成是(  )A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体解析:选D 根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.4.某空间几何体的正视图是三角形,则该几何体不可能是(  )A.圆柱B.圆锥C.四面体D.三棱柱解析:选A 圆柱的正视图不可能是三角形,则该几何体不可能是圆柱.5.如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图;③ 存在圆柱,其正视图、俯视图如图.其中正确命题的个数是(  )A.3B.2C.1D.0解析:选A 底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的正视图和俯视图,因此②正确;当圆柱侧放,即侧视图为圆时,它的正视图和俯视图可以是全等的矩形,因此③正确.故选A.6.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是(  )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.7.已知圆锥的表面积是其底面面积的3倍,则该圆锥的侧面展开图的圆心角为(  )A.120°B.150°C.180°D.240°解析:选C 设圆锥的底面半径为R,母线长为L.由题意,πR2+πRL=3πR2,∴L=2R,圆锥的底面圆周长l=2πR.展开成扇形后,设扇形圆心角为n,则扇形的弧长l==,∴2πR=,∴n =180°,即展开后扇形的圆心角为180°.8.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是(  )图乙A.①③B.①③④C.①②③D.①②③④解析:选A 若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,①③都是能符合要求的几何体,故选A.9.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为(  )A.B.4πC.2πD.解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=×13=.故选D.10.某几何体的三视图如图所示,则该几何体的表面积等于(  ) A.8+2B.11+2C.14+2D.15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为=,所以底面周长为4+,侧面积为2×(4+)=8+2,两底面的面积和为2××1×(1+2)=3,所以该几何体的表面积为8+2+3=11+2.11.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为(  )A.B.C.D.解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=××1×1×1=,剩余部分的体积V2=13-=.所以==,故选D.12.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(  )A.B. C.D.2π解析:选C 过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为V=V圆柱-V圆锥=π·AB2·BC-·π·CE2·DE=π×12×2-π×12×1=,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.若一个圆台的母线长为l,上、下底面半径分别为r1,r2,且满足2l=r1+r2,其侧面积为8π,则l=________.解析:S圆台侧=π(r1+r2)l=2πl2=8π,所以l=2.答案:214.某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知题中几何体是由圆柱的一半和球的四分之一组成的,所以该几何体的体积V=V圆柱+V球=×π×12×2+×π×13=π.答案:π15.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC1的平面A1B1EF,这个平面分三棱台成两部分,这两部分的体积之比为________.解析:设三棱台的上底面面积为S0,则下底面面积为4S0 ,高为h,则V三棱台ABC-A1B1C1=(S0+4S0+2S0)h=S0h,V三棱柱FEC-A1B1C1=S0h.设剩余的几何体的体积为V,则V=S0h-S0h=S0h,体积之比为3∶4或4∶3.答案:3∶4(或4∶3)16.一块正方形薄铁片的边长为4,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积为________.解析:设圆锥筒的底面半径为r,高为h.由题意,得2πr=×2π×4,所以r=1,所以h==,所以V=πr2h=×π×12×=π.答案:π三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某五面体的三视图如图所示,其正视图、俯视图均是等腰直角三角形,侧视图是直角梯形,部分长度已标出,试画出该几何体,并求出此几何体各棱的长.解:借助正方体(棱长为1)及题目所给的三视图,该几何体可看作是从正方体中截出来的(如图①所示),然后将所得图形从正方体中分离出来,即可得到该几何体(如图②所示),易知该几何体为四棱锥A-BMC1C.    图①       图②结合给定的三视图的长度关系,可知在四棱锥A-BMC1C中,AB=1,BC=1,AC=,BM=,AM=,CC1=1,AC1=,MC1=.18.(本小题满分12分)如图所示,在多面体FE-ABCD中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,求该多面体的体积V.解:如图所示,分别过A,B作EF的垂线AG,BH,垂足分别为G,H.连接DG,CH,容易求得EG=HF=.所以AG=GD=BH=HC=,S△AGD=S△BHC=××1=,V=VE-ADG+VF-BHC+VAGD-BHC=×2+×1=.19.(本小题满分12分)据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图案中圆锥、球、圆柱的体积比. 解:设圆柱的底面半径为r,高为h,则V圆柱=πr2h,由题意知圆锥的底面半径为r,高为h,球的半径为r,V圆锥=πr2h,V球=πr3.又h=2r,∴V圆锥∶V球∶V圆柱=∶∶(πr2h)=∶∶(2πr3)=1∶2∶3.20.(本小题满分12分)如图所示,已知正方体ABCD-A1B1C1D1的棱长为a,E,F分别是A1A,CC1的中点,求四棱锥C1-B1EDF的体积.解:连接EF,B1D1.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2.∵正方体ABCD-A1B1C1D1的棱长为a,E,F分别是A1A,CC1的中点,∴h1+h2=B1D1=a.又S△C1EF=C1F·EF=××a=a2,∴VC1-B1EDF=VB1-C1EF+VD-C1EF=·S△C1EF·(h1+h2)=×a2×a=a3.21.(本小题满分12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6m铁丝.再用面积为Sm2的塑料片制成圆柱的侧面和下底面(不安装上底面).圆柱底面半径为rm. (1)当r取何值时,S取得最大值?并求出该最大值(结果精确到0.01);(2)若要制作一个如图所示的底面半径为0.3m的灯笼,请作出该灯笼的三视图(作图时,不需考虑骨架等因素).解:(1)设圆柱的高为hm,由题意,可知4(4r+2h)=9.6,即2r+h=1.2.S=2πrh+πr2=πr(2.4-3r)=3π[-(r-0.4)2+0.16](0

资料: 2159

进入主页

人气:

10000+的老师在这里下载备课资料