第二章 点、直线、平面之间的位置关系
2.1空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系
登高揽胜拓界展怀课前自主学习
1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.学习目标
不同在
有且只有一个没有没有
同一条直线a∥b
相等互补
锐角直角垂直a⊥b
√√
剖析题型总结归纳课堂互动探究
1.判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.|方法总结|
1.空间两条直线平行的证明:一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行.2.求证角相等:一是用等角定理;二是用三角形全等或相似.|方法总结|
1.异面直线一般依附于某几何体,所以在求异面直线所成的角时,首先将异面直线平移成相交直线,而定义中的点O常选取两异面直线中其中一个线段的端点或中点或几何体中的某个特殊点.2.求异面直线所成的角的一般步骤(1)作角:平移成相交直线.(2)证明:用定义证明前一步的角为所求.(3)计算:在三角形中求角的大小,但要注意异面直线所成的角的范围.|方法总结|
知识归纳自我测评堂内归纳提升
word部分:请做:课时分层训练水平达标提升能力点此进入该word板块