一元一次方程的解法(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.下列解方程去分母正确的是 ( )A.由-1=,得2x-1=3-3xB.由-=-1,得2(x-2)-3x-2=-4C.由=--y,得3y+3=2y-3y+1-6yD.由-1=,得12y-1=5y+20【解析】选C.A.不含分母的项漏乘各分母的最小公倍数6,错误;B.的分子作为一个整体去分母后没有加上括号,错误;C.正确;D.不含分母的项漏乘各分母的最小公倍数15,错误.2.解方程=7,下列变形较简便的是 ( )A.方程两边都乘20,得4(5x-120)=140B.方程两边都除以,得x-30=C.去括号,得x-24=7D.方程整理,得·=7【解析】选C.解方程时,并不一定按照解一元一次方程的步骤去解,根据方程特点选择合适的步骤去解,此题中因为与互为倒数,相乘为1,所以可以直接去括号更为简单.【变式训练】解方程-2=x怎样变形较简单?【解析】去中括号,得x+1+3-=x.3.我们来定义一种新运算:=ad-bc.例如,=2×5-3×4=-2;再如=3x-2,按照这种定义,对于=,x的值是( )A.-B.-C.D.
【解析】选A.根据运算的规则:=可化简为:2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.二、填空题(每小题4分,共12分)4.如果a2与-a2是同类项,则m= .【解析】由同类项的定义可知,(2m+1)=(m+3),解这个方程得:m=2.答案:25.当a= 时,1-与互为相反数.【解析】根据题意得1-+=0,去分母,得6-3(a-1)+2(2a-3)=0,解得a=-3.答案:-3【变式训练】当m= 时,代数式和m-3的值相等.【解析】根据题意得=m-3,去分母,得3(2m-3)=5×2m-3×15,解得m=9.答案:96.有一系列方程:第1个方程是x+=3,解为x=2;第2个方程是+=5,解为x=6;第3个方程是+=7,解为x=12;……根据规律,第10个方程是 ,其解为 .【解析】观察给出的方程,第10个方程是+=21,其解为x=10×11=110.答案:+=21 x=110三、解答题(共26分)7.(8分)解方程:(1)(2013·梧州中考)x+2·=8+x.(2)-=1.【解析】(1)原方程变形为x+x+2=8+x,去分母,得x+5x+4=16+2x,移项,合并同类项,得4x=12,方程两边都除以4,得x=3.
【一题多解】原方程变形为x+x+2=8+x,移项,合并同类项,得2x=6,方程两边都除以2,得x=3.(2)原方程变形为-=1,去分母,得5(30x-100)-2(40x-80)=10,去括号,得150x-500-80x+160=10,移项,合并同类项,得70x=350,方程两边都除以70,得x=5.【易错提醒】1.在利用分数的基本性质把分母中的小数化为整数时,方程的右边不变.2.去分母时等号右边的1不能漏乘.3.去分母时分子作为一个整体,必须加括号.8.(8分)在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,我们可以将(x+1),(x-1)各看成一个整体进行移项、合并,得到(x+1)=(x-1),再约分、去分母得3(x+1)=2(x-1),进而求解得x=-5,这种方法叫整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).【解析】移项、合并同类项得(2x+3)=(x-2),约分、去分母,得2(2x+3)=x-2,去括号,得4x+6=x-2,移项、合并同类项,得3x=-8,两边都除以3,得x=-.【培优训练】9.(10分)规定新运算符号的运算过程为,ab=a-b.解方程2(2x)=1x.【解析】因为2x=-x,所以2(2x)=-,又1x=-x,因此原方程可化为:-=-x,去括号,得:-+x=-x,移项,得x+x=-+,
合并同类项,得x=-,方程两边都除以,得x=-.