九年级(上)期中数学试卷 一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方格涂黑.1.实数﹣6、0、﹣2、2的中最小的是( )A.﹣6B.0C.﹣2D.22.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.下列计算正确的是( )A.2a+3a=6aB.a2+a3=a5C.a8÷a2=a6D.(a3)4=a74.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于( )A.20°B.40°C.60°D.80°5.以下说法正确的是( )A.调查某食品添加剂是否超标宜用普查B.甲、乙两组的平均成绩相同,方差分别是S甲2=3.6,S乙2=3.0,则两组成绩一样稳定C.同一年出生的367名学生中,至少有两人的生日是同一天是随机事件D.调查10名运动员兴奋剂的使用情况适宜全面调查6.某班25名女生在一次“1分钟仰卧起坐”测试中,成绩如下表:成绩(次)43454647484951人数2357422则这25名女生测试成绩的众数和中位数分别是( )A.47,46B.47,47C.45,48D.51,477.已知⊙O的直径为8cm,圆心O到直线l的距离为4cm,则直线l和⊙O的位置关系是( )
A.相交B.相离C.相切D.不能确定8.如图,BC是⊙O的直径,点D在⊙O上,AB是⊙O的切线,B为切点,连接CD并延长交AB于点A,若∠BOD=100°,则∠BAC的度数是( )A.40°B.45°C.50°D.80°9.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是( )A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位10.如图图象所反映的过程是:明明从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间(分),y(千米)表示明明离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.明明家离体育场2.5千米B.明明在体育场锻炼了15分钟C.体育场离早餐店1千米D.明明从早餐店回家的平均速是3千米/小时11.如图图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为( )A.141B.106C.169D.150
12.如图,菱形OABC的顶点O、A、C在抛物线y=x2上,其中点O为坐标原点,对角线OB在y轴上,且OB=2.则菱形OABC的面积是( )A.2B.2C.4D.4 二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.轨道交通以其环保、经济成为越来越多的人出行的首选方式.重庆市的轨道交通发展迅速,已建成和正在规划建设的轨道交通项目总投资约1097000万元,数据1097000万元用科学记数法表示为 万元.14.计算:﹣﹣(﹣)﹣2+(3﹣π)0= .15.若方程x2﹣4x+m=0有两个相等的实数根,则m的值是 .16.如图,△ABC中,∠ACB=90°,AB=2AC=6,以B为圆心BC为半径作弧交AB于点D,则阴影部分的面积为 .17.桌面上摆放着背面向上,正面上分别写有数字3、4、6、9、10、12的六张大小、质地相同的卡片,洗和均匀后从中任意翻开一张,将该卡片上的数字作为抛物线y=(5﹣m)x2+2和分式方程=+4中的m的值,则这个m值恰好使得抛物线的开口向下且分式方程有整数解的概率为 .18.如图,已知△ABC中,∠ACB=90°,AC=BC=2,点D为AB边上一点,且AD:BD=1:3,连接CD,现将CD绕点C顺时针旋转90°度得到线段CE,连接EB,则线段EB的长是 .
三、解答题(本大题2小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.解方程:(1)9x2﹣196=0(2)2x2﹣8x﹣3=0.20.如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长. 四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.化简:(1)x(2x﹣1)﹣(x﹣3)2(2)(﹣x﹣2)÷.22.为了解我区初三学生体育达标情况,现对初三部分同学进行了跳绳、立定跳远、实心球三项体育测试,按A(及格),B(良好),C(优秀),D(满分)进行统计,并根据测试的结果绘制了如图两幅不完整的统计图,请你结合所给信息解答下列问题:(1)本次共调查了 名学生,请补全折线统计图.(2)我区初三年级有4100名学生,根据这次统计数据,估计全年级有多少同学获得满分?(3)在接受测试的学生中,“优秀”中有1名是女生,“满分”中有2名是女生,现分别从获得“优秀”和“满分”的学生中各选出一名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.
23.一个不爱读书的民族,是可怕的民族,一个不爱读书的民族,是没有希望的民族.读书开拓视野,增长智慧.在“诵十月”读书活动中,某社区计划筹资15000元购买科普书籍和文艺刊物.(1)该社区计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,该社区有150户居民自愿参与集资,那么平均每户需集资100元.经筹委会进一步宣传,自愿参加的户数在150户的基础上增加了a%(其中a>50),这样每户平均集资在100元的基础上减少a%,那么实际筹资将比计划筹资多3000元,求a的值.24.对x,y定义一种新运算x[]y=(其中a,b均为非零常数),这里等式右边是通常的四则混合运算,例如:0[]2==﹣2b.(1)已知1[]2=3,﹣1[]3=﹣2.请解答下列问题.①求a,b的值;②若M=(m2﹣m﹣1)[](2m﹣2m2),则称M是m的函数,当自变量m在﹣1≤m≤3的范围内取值时,函数值M为整数的个数记为k,求k的值;(2)若x[]y=y[]x,对任意实数x,y都成立(这里x[]y和y[]x均有意义),求a与b的函数关系式? 五、解答题.(本大题共2小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.如图,在△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)如图1,若AD=3,AB=BC=5,求ED的长;(2)如图2,若∠ABC=45°,求证:CE+EF=ED;(3)如图3,若∠ABC=45°,现将△ADC沿AC边翻折得到△AGC,连接EG、DG.猜想线段AE、DG、BE之间的数量关系,写出关系式,并证明你的结论.
26.如图1,已知抛物线y=﹣x2﹣4x+5交x轴于点A、B两点(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,连接AD.(1)求直线AD的解析式.(2)点E(m,0)、F(m+1,0)为x轴上两点,其中(﹣5<m<﹣3.5)EE′、FF′分别平行于y轴,交抛物线于点E′和F′,交AD于点M、N,当ME′+NF′的值最大时,在y轴上找一点R,使得|RE′﹣RF′|值最大,请求出点R的坐标及|RE′﹣RF′|的最大值.(3)如图2,在抛物线上是否存在点P,使得△PAC是以AC为底边的等腰三角形,若存在,请出点P的坐标及△PAC的面积,若不存在,请说明理由.
九年级(上)期中数学试卷参考答案与试题解析 一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方格涂黑.1.实数﹣6、0、﹣2、2的中最小的是( )A.﹣6B.0C.﹣2D.2【考点】实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.依此即可求解.【解答】解:因为﹣6<﹣2<0<2,所以实数﹣6、0、﹣2、2的中最小的是﹣6.故选:A.【点评】考查了实数大小比较,关键是熟悉正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小的知识点. 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.
3.下列计算正确的是( )A.2a+3a=6aB.a2+a3=a5C.a8÷a2=a6D.(a3)4=a7【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键. 4.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于( )A.20°B.40°C.60°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
5.以下说法正确的是( )A.调查某食品添加剂是否超标宜用普查B.甲、乙两组的平均成绩相同,方差分别是S甲2=3.6,S乙2=3.0,则两组成绩一样稳定C.同一年出生的367名学生中,至少有两人的生日是同一天是随机事件D.调查10名运动员兴奋剂的使用情况适宜全面调查【考点】方差;全面调查与抽样调查;随机事件.【分析】分别利用全面调查与抽样调查的意义,再结合随机事件的定义和方差的意义分别分析得出答案.【解答】解:A.调查某食品添加剂是否超标宜用抽样调查,故此选项错误;B.甲、乙两组的平均成绩相同,方差分别是S甲2=3.6,S乙2=3.0,则乙的成绩稳定,故此选项错误;C.同一年出生的367名学生中,至少有两人的生日是同一天是必然事件,故此选项错误;D.调查10名运动员兴奋剂的使用情况适宜全面调查,正确.故选:D.【点评】此题主要考查了方差、随机事件、全面调查与抽样调查等知识,正确把握相关定义是解题关键. 6.某班25名女生在一次“1分钟仰卧起坐”测试中,成绩如下表:成绩(次)43454647484951人数2357422则这25名女生测试成绩的众数和中位数分别是( )A.47,46B.47,47C.45,48D.51,47【考点】众数;中位数.【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第13个数解答即可.【解答】解:47出现的次数最多,出现了7次,所以众数为47,按从小到大的顺序排列,第13个数是47,所以中位数为47,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.
7.已知⊙O的直径为8cm,圆心O到直线l的距离为4cm,则直线l和⊙O的位置关系是( )A.相交B.相离C.相切D.不能确定【考点】直线与圆的位置关系.【分析】由⊙O的直径为8cm,得出圆的半径是4cm,圆心O到直线l的距离为4cm,即d=4cm,得出d=r,即可得出直线l与⊙O的位置关系是相切.【解答】解:∵⊙O的直径为8cm,∴r=4cm,∵d=4cm,∴d=r,∴直线l与⊙O的位置关系是相切.故选:C.【点评】本题考查了直线与圆的位置关系;若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交. 8.如图,BC是⊙O的直径,点D在⊙O上,AB是⊙O的切线,B为切点,连接CD并延长交AB于点A,若∠BOD=100°,则∠BAC的度数是( )A.40°B.45°C.50°D.80°【考点】切线的性质.【分析】由切线的性质可知BC⊥BA,由圆周角定理可知∠C=50°,从而可求得∠A=40°.【解答】解:∵BA是圆O的切线,B为切点,∴BC⊥BA.∴∠CBA=90°.∵∠BOD=100°,∴∠C=50°.∴∠A=90°﹣50°=40°.
故选:A.【点评】本题主要考查的是切线的性质和圆周角定理的应用,利用切线的性质和圆周角定理求得∠CBA=90°、∠C=50°是解题的关键. 9.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是( )A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【考点】二次函数图象与几何变换.【分析】根据图象左移加,可得答案.【解答】解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.【点评】本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减. 10.如图图象所反映的过程是:明明从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间(分),y(千米)表示明明离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.明明家离体育场2.5千米B.明明在体育场锻炼了15分钟C.体育场离早餐店1千米D.明明从早餐店回家的平均速是3千米/小时【考点】函数的图象.【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【解答】解:A、明明家离体育场2.5千米,正确;
B、明明在体育场锻炼了30﹣15=15分钟,正确;C、体育场离早餐店2.5﹣1.5=1千米,正确;D、明明从早餐店回家的平均速是千米/分钟,错误.故选D.【点评】本题考查了函数图象,观察函数图象获得有效信息是解题关键. 11.如图图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为( )A.141B.106C.169D.150【考点】规律型:图形的变化类.【分析】通过观察图形可知:第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…由此得出第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+,然后把n=8代入计算即可.【解答】解:∵第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…∴第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+;则第⑧个图形中棋子的颗数为1+=141.故选:A.【点评】本题考查图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况解决问题. 12.如图,菱形OABC的顶点O、A、C在抛物线y=x2上,其中点O为坐标原点,对角线OB在y轴上,且OB=2.则菱形OABC的面积是( )
A.2B.2C.4D.4【考点】菱形的性质;二次函数图象上点的坐标特征.【分析】根据二次函数图象上点的坐标性质得出A,C点坐标,进而利用三角形面积求法得出答案.【解答】解:∵菱形OABC的顶点O、A、C在抛物线y=x2上,对角线OB在y轴上,且OB=2,∴由题意可得:A,C点纵坐标为1,故1=x2,解得:x=±,故A(,1),C(﹣,1),故菱形OABC的面积是:2×(×2×)=2.故选:B.【点评】此题主要考查了菱形的性质以及二次函数图象上点的坐标性质,得出A,C点坐标是解题关键. 二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.轨道交通以其环保、经济成为越来越多的人出行的首选方式.重庆市的轨道交通发展迅速,已建成和正在规划建设的轨道交通项目总投资约1097000万元,数据1097000万元用科学记数法表示为 1.097×106 万元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1097000用科学记数法表示为:1.097×106.故答案为:1.097×106.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 14.计算:﹣﹣(﹣)﹣2+(3﹣π)0= ﹣6 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用算术平方根定义计算,第二项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣3﹣4+1=﹣6.故答案为:﹣6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 15.若方程x2﹣4x+m=0有两个相等的实数根,则m的值是 4 .【考点】根的判别式.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.【解答】解:∵方程x2﹣4x+m=0有两个相等的实数根,∴△=b2﹣4ac=16﹣4m=0,解之得,m=4故本题答案为:4【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 16.如图,△ABC中,∠ACB=90°,AB=2AC=6,以B为圆心BC为半径作弧交AB于点D,则阴影部分的面积为 ﹣ .
【考点】扇形面积的计算.【分析】先根据锐角三角函数的定义求出∠B的度数,再由勾股定理求出BC的长,再根据S阴影=S△ABC﹣S扇形BCD进行解答即可.【解答】解:∵∠ACB=90°,AB=2AC=6,∴AC=3,∠B=30°,∴BC==3,∴S阴影=S△ABC﹣S扇形BCD=AC•BC﹣=﹣=﹣.故答案为:﹣.【点评】本题考查的是扇形面积的计算及直角三角形的性质,熟知三角形及扇形的面积公式是解答此题的关键. 17.桌面上摆放着背面向上,正面上分别写有数字3、4、6、9、10、12的六张大小、质地相同的卡片,洗和均匀后从中任意翻开一张,将该卡片上的数字作为抛物线y=(5﹣m)x2+2和分式方程=+4中的m的值,则这个m值恰好使得抛物线的开口向下且分式方程有整数解的概率为 .【考点】概率公式;分式方程的解;二次函数的性质.【分析】由m值恰好使得抛物线的开口向下,可得5﹣m<0,由分式方程有整数解,可得m=4,6,12,继而求得这个m值恰好使得抛物线的开口向下且分式方程有整数解的情况,再利用概率公式即可求得答案.【解答】解:∵m值恰好使得抛物线的开口向下,则5﹣m<0,解得:m>5,∴m=6,9,10,
∵=+4,∴mx=6x+4(x﹣6),解得:x=﹣,∵分式方程有整数解,∴m=4,6,12,∴这个m值恰好使得抛物线的开口向下且分式方程有整数解的只有6和12,∴这个m值恰好使得抛物线的开口向下且分式方程有整数解的概率为:=.故答案为:.【点评】此题考查了概率公式的应用、二次函数的性质以及分式方程的整数解.用到的知识点为:概率=所求情况数与总情况数之比. 18.如图,已知△ABC中,∠ACB=90°,AC=BC=2,点D为AB边上一点,且AD:BD=1:3,连接CD,现将CD绕点C顺时针旋转90°度得到线段CE,连接EB,则线段EB的长是 5 .【考点】旋转的性质.【专题】计算题.【分析】连结AE,如图,先判断△ACB为等腰直角三角形得到∠BAC=∠ABC=45°,AB=AC=4,则BD=3,再根据旋转的性质得CE=CD,∠DCE=90°,利用等角的余角相等得到∠ACE=∠BCD,则根据旋转的定义可判断△CBD绕点C顺时针旋转90°度得到△CAE,接着根据旋转的性质得AE=BD=3,∠CAE=∠CBD=45°,所以∠BAE=90°,最后在Rt△BAE中利用勾股定理可计算出EB的长.【解答】解:连结AE,如图,∵∠ACB=90°,AC=BC=2,∴△ACB为等腰直角三角形,∴∠BAC=∠ABC=45°,AB=AC=4,∵AD:BD=1:3,
∴BD=3,∵CD绕点C顺时针旋转90°度得到线段CE,∴CE=CD,∠DCE=90°,∴∠ACE=∠BCD,∴△CBD绕点C顺时针旋转90°度得到△CAE,∴AE=BD=3,∠CAE=∠CBD=45°,∴∠BAE=45°+45°=90°,在Rt△BAE中,∵AE=3,AB=4,∴BE==5.故答案为5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质. 三、解答题(本大题2小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.解方程:(1)9x2﹣196=0(2)2x2﹣8x﹣3=0.【考点】解一元二次方程-公式法;解一元二次方程-直接开平方法.【专题】计算题.【分析】(1)先变形得到x2=,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.【解答】解:(1)x2=,所以x1=,x2=﹣;
(2)△=(﹣8)2﹣4×2×(﹣3)=88,x==,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣求根公式法:用求根公式解一元二次方程的方法是公式法.也考查了直接开平方法解一元二次方程. 20.如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.【考点】切线的性质.【分析】连接OC,AB为切线,所以有OC⊥AB,根据题意,得C为△AOB的中点,即AC=5cm,根据勾股定理即可得出OA的长度.【解答】解:连接OC;∵AB与⊙O相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC=5,在Rt△AOC中,(cm).答:OA的长为.【点评】本题考查了切线与圆的位置关系,利用勾股定理求解直角三角形的知识. 四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.
21.化简:(1)x(2x﹣1)﹣(x﹣3)2(2)(﹣x﹣2)÷.【考点】分式的混合运算;整式的混合运算.【分析】(1)利用整式的乘法和完全平方公式计算,再进一步合并即可;(2)括号内先通分,再把除法改为乘法计算即可.【解答】解:(1)原式=2x2﹣x﹣(x2﹣6x+9)=2x2﹣x﹣x2+6x﹣9=x2+5x﹣9;(2)原式=÷=•=﹣x.【点评】此题考查分式的混合运算,整式的混合运算,掌握运算方法是解决问题的关键. 22.(2015秋•重庆校级期中)为了解我区初三学生体育达标情况,现对初三部分同学进行了跳绳、立定跳远、实心球三项体育测试,按A(及格),B(良好),C(优秀),D(满分)进行统计,并根据测试的结果绘制了如图两幅不完整的统计图,请你结合所给信息解答下列问题:(1)本次共调查了 20 名学生,请补全折线统计图.(2)我区初三年级有4100名学生,根据这次统计数据,估计全年级有多少同学获得满分?(3)在接受测试的学生中,“优秀”中有1名是女生,“满分”中有2名是女生,现分别从获得“优秀”和“满分”的学生中各选出一名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.
【考点】列表法与树状图法;用样本估计总体;扇形统计图;折线统计图.【分析】(1)用A的人数除以所占的百分比,即可求出调查的学生数,再补全折线统计图即可;(2)计算出20名学生中满分所在的比例,即可估计全年级有多少同学获得满分;(3)列表或画树形图,再根据概率公式进行计算即可.【解答】解:(1)由扇形统计图可知A占35%,由条形统计图可知人数为7人,所以总人数=7÷35=20(人),如图所示:(2)满分的人数=×4100=820(人);(3)列表如下:男男女女男男男男男女男女男男男男男男女男女男女男女男女女女女女总共有12种等可能的结果,满足条件的有4种,P(两名男生)=.【点评】本题考查列树状图与列表法求概率,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23.(2015秋•重庆校级期中)一个不爱读书的民族,是可怕的民族,一个不爱读书的民族,是没有希望的民族.读书开拓视野,增长智慧.在“诵十月”读书活动中,某社区计划筹资15000元购买科普书籍和文艺刊物.(1)该社区计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,该社区有150户居民自愿参与集资,那么平均每户需集资100元.经筹委会进一步宣传,自愿参加的户数在150户的基础上增加了a%(其中a>50),这样每户平均集资在100元的基础上减少a%,那么实际筹资将比计划筹资多3000元,求a的值.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设用x元购买文艺刊物,则用(15000﹣x)元购买科普书籍,根据购买文艺刊物的资金不少于购买科普书籍资金的2倍列出不等式,解不等式即可;(2)根据实际筹资将比计划筹资多3000元建立方程,解方程即可.【解答】解:(1)设用x元购买文艺刊物,则用(15000﹣x)元购买科普书籍,根据题意得x≥2(15000﹣x),解得x≥10000.答:最少用10000元购买文艺刊物;(2)由题意得150(1+a%)×100(1﹣a%)=15000+3000,解得a1=100,a2=50(不合题意舍去),∵a>50,∴a=100.答:a的值为100.【点评】本题考查了一元二次方程与一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式,再求解. 24.对x,y定义一种新运算x[]y=(其中a,b均为非零常数),这里等式右边是通常的四则混合运算,例如:0[]2==﹣2b.
(1)已知1[]2=3,﹣1[]3=﹣2.请解答下列问题.①求a,b的值;②若M=(m2﹣m﹣1)[](2m﹣2m2),则称M是m的函数,当自变量m在﹣1≤m≤3的范围内取值时,函数值M为整数的个数记为k,求k的值;(2)若x[]y=y[]x,对任意实数x,y都成立(这里x[]y和y[]x均有意义),求a与b的函数关系式?【考点】二次函数综合题.【分析】(1)①结合新运算的定义,代入数据,解二元一次方程组即可得出结论;②将a、b的值代入原定义式中,用m表示出M,由二次函数的性质即可找出M的取值范围,从而得出k的值;(2)x[]y=y[]x得出关于a、b、x、y的等式,由对任意实数x,y都成立,找出恒为0的代数式a+4b=0,从而得出结论.【解答】解:(1)①由1[]2=3,﹣1[]3=﹣2,得,解得.答:a的值为8,b的值为﹣1.②把a=8,b=﹣1代入x[]y=,得x[]y=,M=(m2﹣m﹣1)[](2m﹣2m2)=﹣2m2+2m+4=﹣2+,又∵﹣1≤m≤3,∴当m=时,M取最大值;当m=﹣1时,M=0;当m=3时,M=﹣8.∴﹣8≤M≤=4,∴k=8+4+1=13.(2)∵x[]y=y[]x,∴=,∴ay2﹣ax2+4by2﹣4bx2=0,∴a(y2﹣x2)+4b(y2﹣x2)=0,
即(a+4b)(y2﹣x2)=0.∵对任意实数x,y都成立,∴a+4b=0,∴a=﹣4b.【点评】本题考查了解二元一次方程组以及二次函数的性质,解题的关键:(1)①代入数据解二元一次方程组;②结合二次函数的性质寻找最值;(2)代入定义式,寻找恒为0的量.本题属于中档题,难度不大,但是由于涉及到新的运算规则,不少学生会放弃该题,其实在解决新定义类型的题目时,运算都是很简单的,只要牢记运算的规则,套入给定的例子即可得出结论. 五、解答题.(本大题共2小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.如图,在△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)如图1,若AD=3,AB=BC=5,求ED的长;(2)如图2,若∠ABC=45°,求证:CE+EF=ED;(3)如图3,若∠ABC=45°,现将△ADC沿AC边翻折得到△AGC,连接EG、DG.猜想线段AE、DG、BE之间的数量关系,写出关系式,并证明你的结论.【考点】几何变换综合题.【分析】(1)根据勾股定理和直角三角形斜边中线等于斜边的一半即可求解;(2)过点D作DM⊥ED交BE于点M,先证明△ACD≌△BFD和△AED≌△BMD,进一步通过等量代换和加减即可求解;(3)过点D作DN⊥ED于点D交BE于点N,先证明△AED≌△BND,再论证四边形DGEN为平行四边形,通过等量代换即可求解.【解答】解:(1)如图1
∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=3,AB=BC=5,∴AE=CE,DE=AC,∴BD===4,∴CD=BC﹣BD=1,∴AC===,∴DE=;(2)如图2过点D作DM⊥ED交BE于点M,∵BE⊥AC于点E,AD⊥BC于点D,可证:∠CBE=∠CAD,∠EDF=∠BDM,∵∠ABC=45°,∴△ADB是等腰直角三角形,∴AD=BD,在△ACD和△BFD中,
,∴△ACD≌△BFD,∴FD=CD,AC=BF,在△AED和△BMD中,,∴△AED≌△BMD,∴DE=DM,AE=BM,∴FM=CE,∴EF+EC=EF+FM=EM,在Rt△DEM中,可求EM=ED,∴EF+EC=ED;(3)如图3过点D作DN⊥ED于点D交BE于点N.与(2)同理易证△AED≌△BND,∴ED=ND,BN=AE,∴∠DEB=45°,∵BE⊥AC,∴∠CED=∠BED=45°∴∠CEG=∠CED=45°∴∠DEG=90°∴∠DEG=∠EDN=90°
∴EG∥DN,又DG∥BE∴四边形DGEN为平行四边形∴DG=EN∵BE=EN+BN∴BE=AE+DG.【点评】此题主要考查几何变换的综合问题,会构造三角形全等,会运用勾股定理求线段的长度,会灵活运用等量代换和加减是解题的关键. 26.如图1,已知抛物线y=﹣x2﹣4x+5交x轴于点A、B两点(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,连接AD.(1)求直线AD的解析式.(2)点E(m,0)、F(m+1,0)为x轴上两点,其中(﹣5<m<﹣3.5)EE′、FF′分别平行于y轴,交抛物线于点E′和F′,交AD于点M、N,当ME′+NF′的值最大时,在y轴上找一点R,使得|RE′﹣RF′|值最大,请求出点R的坐标及|RE′﹣RF′|的最大值.(3)如图2,在抛物线上是否存在点P,使得△PAC是以AC为底边的等腰三角形,若存在,请出点P的坐标及△PAC的面积,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线的解析式求得点A、D的坐标,然后利用待定系数法来求直线AD的解析式即可;(2)根据平行线的性质和函数图象上点的坐标特征易得ME′+NF′=﹣m2﹣7m﹣10﹣m2﹣9m﹣18=2m2﹣16m﹣28;结合二次函数最值的求法和两点间线段最短得到:要使|RE′﹣RF′|值最大,则点E′、F′、R三点在一条直线上,只需求得点E′、F′的坐标,利用待定系数法推知直线E′F′关系式,由该关系式来求点R的坐标即可;
(3)当PA=PC时,点P在线段AC的垂直平分线上,结合三角形的面积公式进行解答.【解答】解:(1)如图1,∵y=﹣x2﹣4x+5=﹣(x+5)(x﹣1)或y=﹣(x+2)2+9,∴A(﹣5,0),B(1,0),D(﹣2,9).设直线AD的解析式为:y=kx+b(k≠0),把A、D的坐标代入,得,解得.故直线AD的解析式为:y=3x+15;(2)如图1,∵EE′∥y轴,FF′∥y轴,E(m,0)、F(m+1,0),∴E(m,﹣m2﹣4m+5)、F(m+1,﹣(m+1)2﹣4(m+1)+5),M(m,3m+15),N(m+1,3(m+1)+15),∴ME′=﹣m2﹣4m+5﹣(3m+15)=﹣m2﹣7m﹣10,NF′=﹣m2﹣9m﹣18,∴ME′+NF′=﹣m2﹣7m﹣10﹣m2﹣9m﹣18=2m2﹣16m﹣28.∵﹣2<0,∴m=﹣=﹣4,∴ME′+NF′有最大值,此时E′(﹣4,5),F′(﹣3,8),要使|RE′﹣RF′|值最大,则点E′、F′、R三点在一条直线上,∴设直线E′F′:y=kx+b(k≠0),则,解得,∴直线E′F′:y=3x+17(k≠0).当x=0时,y=17,则点R的坐标是(0,17).此时,|RE′﹣RF′|的最大值为=;(3)如图2,设点P(x,﹣x2﹣4x+5).当PA=PC时,点P在线段AC的垂直平分线上,
∵OC=OA,∴点O在线段AC的垂直平分线上,∴点P在∠AOC的角平分线上,∴﹣x=﹣x2﹣4x+5,解得x1=,x2=,∴P(,),P′(,).∴PH=OP﹣OH=,P′H=OP′+OH=,∴S△PAC=AC•PH=×5×=或S△PAC=AC•P′H=×5×=.【点评】本题考查了二次函数综合题.其中涉及到的知识点有待定系数法求一次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及三角形的面积计算.在求有关动点问题时要注意分析题意分情况讨论结果.