5.4一元一次方程的应用(第6课时)【教学目标】知识目标:通过对实际问题的分析,掌握用方程计算球赛积分、计费类问题的方法.能力目标:培养学生分析问题、解决问题的能力.情感目标:学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度,借助学生身边熟悉的例子认识数学的应用价值.教学重难点:重点:让学生知道球赛积分、水电气等计费问题的算法.难点:把生活中的实际问题抽象出数学问题.【教学过程】(一)导入新课:前面我们探究了有关销售中的盈亏问题,通过学习学生应初步掌握了有关一元一次方程实际问题的解决办法.本课时我们继续探讨有关球赛积分和计费问题:问题1:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?问题2:电价问题据我们调查,我市居民生活用电价格为每天7时到23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.问题3:水费问题我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按1.3元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.w问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)(2)根据你家用水情况,设计出最佳用水方案.问题4:用气问题某市按下列规定收取每月的煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.
【教学说明】以上四个问题均是与本课时内容相关的问题,学生对于这三个问题的发言肯定有所欠缺,教师要予以鼓励并加以补充,只要学生有根据实际情况选择最佳方案这种意识并能大致说出方案即可.因为下面的栏目中将具体探讨选择方案的问题.(二)探究新知:探究球赛积分表问题:对于问题1,设问1:通过观察积分榜,你能选择出其中哪一行最能说明负一场积几分吗?进而你能得到胜一场积几分吗?【教学说明】教师让学生观察教材或课件中的积分表进行思考.观察积分榜,从最下面一行数据可以看出:负一场积1分;设胜一场积x分,从表中其他任何一行可以列方程,求出x的值,如可以从第一行列方程10x+4=24.由此得x=2.即:负一场积1分,胜一场积2分.设问2:你能用式子表示总积分与胜、负场数之间的数量关系吗?教师引导学生分析:如果一个队胜m场,则负(14-m)场,胜场积分2m分,负场积分(14-m)分,总积分为2m+(14-m)=m+14.设问3:某队的胜场总积分能等于它的负场总积分吗?教师引导学生分析:设一个队胜了x场,则负了(14-x)场.如果这个队的胜场总积分等于负场总积分,则得方程2x-(14-x)=0.由此得x=.由于x的值必须是整数,所以x=143不符合实际,因此没有哪个队的胜场总积分等于负场总积分.例某地上网有两种收费方法,用户可以任选其一:A计时制:1元/小时,B包月制:80元/月,此外,每一种上网方式都加收通讯费0.1元/小时.(1)某用户每月上网40小时,选用哪种上网方式比较合算?(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.【分析】(1)分别计算出两种上网方式上网40小时的消费额,进行比较;(2)分别计算出两种方式下的上网时间,进行比较;(3)设每月上网m小时两种上网方式的消费额相等,再进行分析.
解:(1)如果用户每月上网40小时,则选择A需支付40×(1+0.1)=44(元),选择B需支付80+40×0.1=84(元).因为44