2.5有理数乘方(第1课时)【教学目标】知识目标:1.使学生理解乘、幂、底数、指数的概念,了解乘方概念的产生过程;2.掌握乘方与幂的表示法,理解幂的符号法则;3.学会相同因数的乘方与乘法的互相转化,掌握有理数的乘方运算以及乘方、乘、除混合运算。【教学重点、难点】重点:乘方的概念及表示方法、有理数的乘方运算难点:幂、底数、指数的概念及表示和乘方、乘、除混合运算。【教学过程】一、创设情境,引出课题提出课本中的问题:(1)如图1,正方形的面积为5×5,是2个5相乘(2)如图2,立方体的体积为5×5×5,是3个5相乘若6个5相乘,算式是5×5×5×5×5×5那么相同因数相乘,能不能用一个简单的式子表示呢?二、交流对话,探究新知1.规定:相同因数相乘,可以只写一个因数,而在它的右上角写上相同因数的个数。例如:5×5=52,5×5×5=53,5×5×5×5×5×5=56一般地,在数学上我们把个相同的因数相乘的积记作,即这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在中,叫做底数,叫做指数,读做“的次方”或“的次幂”如,,反过来也成立,如
,然后请学生分别说出上面三式中的底数、指数和读法。注意:幂的底数是分数或负数时,底数必须添上括号。一个数可以看做这个数本身的一次方,如51=5,指数1通常省略不写;二次方也叫平方,如52可读做5的平方或5的二次幂;三次方也叫立方,如53可读做5的立方或5的三次幂。让学生完成课本中的做一做1,2,3三、应用新知,体验成功1.讲解例1(学生口述,教师板书并归纳符号的处理)计算:(1)(2)(3)(4)注:计算时提醒学生先把要求的式子写成几个相同因式相乘的形式,把问题转化为多个有理数乘法的计算,底数是带分数的要化成假分数,待熟练后,可先定符号,再算绝对值。从上面的计算中与学生一起归纳出幂的符号规律①正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数②1的任何次幂都是1,-1的偶次幂都是1,-1的奇次幂都是-1,零的任何正整数次幂都是零。完成课本中的做一做(学生模仿练习,教师作点评)2.讲解例2计算:(1)(2)(3)(4)教师讲评时要先让学生分清每一题中有哪几种运算,然后按照运算顺序逐步进行计算。说明:上例是乘除和乘方的混合运算,计算时要注意运算顺序:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。完成课内练习1,2四、课堂小结(可与学生一起归纳)1.乘方是一种新运算,它是一种特殊的乘法,特殊在因数相同,当底数是分数或负数时,写成幂时底数要加括号。2.在进行乘除和乘方的混合运算时要注意运算的顺序。3.至今已学了五种运算:加、减、乘、除、乘方,运算的结果分别是和、差、积、商、幂【练习设计】教科书中的对应练习题.