第三章第3节 离心现象
内容索引0102基础落实•必备知识全过关重难探究•能力素养全提升03学以致用•随堂检测全达标
学习目标1.学会通过车辆转弯问题及凹、凸桥和过山车问题分析水平面内和竖直面内的圆周运动。(科学思维)2.知道什么是离心运动,学会通过实例分析离心运动。(科学思维)3.学会运用圆周运动知识分析生活中的实际问题。(科学思维)
思维导图
基础落实•必备知识全过关
一、车辆转弯时所需的向心力1.汽车转弯问题(1)汽车在水平路面上转弯时,有向外侧滑的趋势,地面会对汽车产生指向内侧的静摩擦力。(2)根据公式,弯道半径一定,汽车速度超过一定限度时,汽车就会向外侧滑。2.火车转弯问题(1)转弯处设计外高内低。(2)火车以规定速度行驶时,恰好由重力和支持力的合力提供向心力。3.飞机转弯问题飞机转弯时所需的向心力由重力和空气对它的作用力的合力提供。
二、竖直平面内的圆周运动分析1.汽车过凸形路面(如图甲)甲
2.汽车过凹形路面(如图乙)乙
3.游乐场的过山车
三、生活中的离心运动1.定义:做圆周运动的物体,在受到的向心力突然消失或者不足以提供做圆周运动所需的向心力的情况下,将远离圆心运动。2.离心运动的应用和防止(1)应用:离心分离器;离心干燥器;洗衣机的脱水筒。(2)防止:飞机翻飞旋转,造成过荷现象;汽车在公路转弯处必须降低行车速度。
易错辨析判一判(1)火车弯道的半径很大,故火车转弯需要的向心力很小。(×)提示由知,向心力由多个因素决定,半径大,向心力不一定小。(2)火车在水平路面上转弯时,外轨挤压火车的外轮缘。(√)(3)车辆按规定车速通过“内低外高”的弯道时,向心力是由重力和支持力的合力提供的。(√)(4)汽车过拱形桥或凹形路面时,向心加速度的方向都是向上的。(×)提示汽车过拱形桥时,向心加速度的方向向下;过凹形路面时,向心加速度的方向向上。(5)做匀速圆周运动的物体,当提供向心力的合力突然消失或变小时将做离心运动。(√)
合格考试练一练1.(多选)如图所示,汽车以速度v通过一弧形的拱桥顶端时,关于汽车受力的说法中正确的是(BD)A.汽车的向心力就是它所受的重力B.汽车的向心力是它所受的重力与支持力的合力,方向指向圆心C.汽车受重力、支持力、牵引力、摩擦力和向心力的作用D.汽车受到的支持力比重力小解析汽车以速度v通过一弧形的拱桥顶端时,汽车受重力、支持力、牵引力和摩擦力,重力与支持力的合力提供向心力,方向指向圆心,A、C错误,B正确;汽车受到的支持力比重力小,D正确。
2.赛车在外高内低的倾斜轨道上转弯时,弯道的倾角为θ,半径为r,则赛车完全不靠摩擦力转弯的速率是(设转弯半径水平)(C)
重难探究•能力素养全提升
探究一火车转弯问题分析[情境导引]如图所示为火车车轮的构造及火车转弯时的情境,设火车转弯时的运动是匀速圆周运动,观察图片并思考:(1)火车转弯处的铁轨有什么特点?(2)火车转弯时哪些力的合力提供向心力?(3)火车转弯时速度过大或过小,会对哪侧轨道有侧压力?
要点提示(1)火车转弯处,外轨高于内轨。(2)重力、支持力、轨道的弹力的合力。(3)火车转弯时速度过大会对轨道外侧有压力,速度过小会对轨道内侧有压力。
[知识归纳]1.轨迹分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面。火车的向心加速度和向心力均沿水平面指向圆心。
2.向心力分析(1)若转弯处内外轨一样高,则由外轨对轮缘的弹力提供向心力。(2)若转弯时外轨略高于内轨,根据弯道的半径和规定的速度,适当选择内、外轨的高度差,则按规定速度转弯时所需的向心力完全由重力和支持力的合力提供。
3.规定速度分析
4.轨道轮缘压力与火车速度的关系(1)当火车行驶速度v等于规定速度v0时,内、外轨道对轮缘都没有侧压力。(2)当火车行驶速度v大于规定速度v0时,火车有离心运动趋势,故外轨道对轮缘有侧压力。(3)当火车行驶速度v小于规定速度v0时,内轨道对轮缘有侧压力。画龙点睛火车轨道外高内低的目的是让支持力倾斜,让支持力在指向圆心方向的分力提供向心力。同理,汽车和摩托车赛道拐弯处、高速公路转弯处设计成外高内低,可以减小车轮和路面间的横向摩擦力。
[应用体验]典例1有一列质量为100t的火车,以72km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400m。(g取10m/s2)(1)试计算铁轨受到的侧压力。(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值。点拨第(1)问中,外轨对轮缘的侧压力提供火车转弯所需要的向心力;第(2)问中,重力和铁轨对火车的支持力的合力提供火车转弯的向心力。
答案(1)1×105N(2)0.1
规律方法火车转弯问题的两点注意(1)合力的方向:火车转弯时,火车所受合力沿水平方向指向圆心,而不是沿轨道斜面向下。(2)规定速率:火车轨道转弯处的规定速率一旦确定则是唯一的,火车只有按规定的速率转弯,内外轨才不受火车的挤压作用。速率过大时,由重力、支持力及外轨对轮缘的挤压力的合力提供向心力;速率过小时,由重力、支持力及内轨对轮缘的挤压力的合力提供向心力。
针对训练1(多选)火车在铁轨上转弯可以看作是做匀速圆周运动,火车速度提高易使外轨受损。为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是(BD)A.减小弯道半径B.增大弯道半径C.适当减小内外轨道的高度差D.适当增加内外轨道的高度差解析当火车速度增大时,可适当增大转弯半径或适当增加内外轨道的高度差,以减小外轨所受压力。
探究二汽车过桥问题分析[情境导引]如图所示,一辆汽车以恒定的速度在起伏不平的路面上行进,请思考:汽车在哪一点对路面的压力最大?在哪一点对路面的压力最小?在哪一点容易发生“飞车”现象?要点提示在最低点B时对路面的压力最大;在最高点C时对路面的压力最小,易发生“飞车”现象。
[知识归纳]
[应用体验]典例2如图所示,质量m=2.0×104kg的汽车以不变的速率先后驶过凹形路面和凸形路面,两路面的圆弧半径均为20m。如果路面承受的压力不得超过3.0×105N,则:(1)汽车允许的最大速率是多少?(2)若以所求速率行驶,汽车对路面的最小压力是多少?(g取10m/s2)点拨首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最低点时,汽车对路面的压力最大。
解析(1)汽车在凹形路面底部时,由牛顿第二定律得代入数据解得v=10m/s。(2)汽车在凸形路面顶部时,由牛顿第二定律得mg-N'=代入数据得N'=1.0×105N。由牛顿第三定律知汽车对路面的最小压力是1.0×105N。答案(1)10m/s(2)1.0×105N规律方法(1)过凹形路面最低点时,汽车的加速度方向竖直向上,处于超重状态,为使对路面压力不超出最大承受力,汽车有最大行驶速度限制。(2)汽车对路面的压力与路面对汽车的支持力是作用力与反作用力。
针对训练2如图所示,当汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力为车重的,如果要使汽车在桥面行驶至桥顶时,对桥面的压力为零,则汽车通过桥顶的速度应为(B)A.15m/sB.20m/sC.25m/sD.30m/s
探究三对离心运动的理解[情境导引]雨天,当你旋转自己的雨伞时,会发现水滴沿着伞的边缘切线飞出。汽车高速转弯时,若摩擦力不足,汽车会滑出路面。请思考:(1)水滴飞出、汽车滑出是因为受到了离心力的作用吗?(2)物体做离心运动的条件是什么?要点提示(1)水滴飞出、汽车滑出的原因是物体惯性的表现,不是因为受到了离心力,离心力是不存在的。(2)物体做离心运动的条件是做圆周运动的物体,提供向心力的外力突然消失或者外力不能提供足够大的向心力。
[知识归纳]1.离心运动的实质物体惯性的表现。做圆周运动的物体,总有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力作用的缘故。一旦作为向心力的合外力突然消失或不足以提供向心力,物体就会发生离心运动。2.离心运动的受力特点物体做离心运动并不是物体受到离心力作用,而是由于外力不能提供足够的向心力。
3.离心运动的条件(1)如图所示,若F合=mrω2或,物体做匀速圆周运动,即“提供”满足“需要”。(2)若F合>mrω2或F合>,物体做半径变小的近心运动,即“提供”大于“需要”。(3)若F合h。如果列车转弯速率大于,则(A)A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内外侧铁轨与轮缘间均有挤压
3.一辆运输西瓜的汽车(可视为质点),以大小为v的速度经过一座半径为R的拱形桥。在桥的最高点,其中一个质量为m的西瓜A(位置如图所示)受到周围的西瓜对它的作用力的大小为(C)
4.如图所示,高速公路转弯处弯道圆半径R=250m,汽车轮胎与路面间的动摩擦因数μ=0.25,设最大静摩擦力等于滑动摩擦力。若路面是水平的,问汽车转弯时不发生侧向滑动(离心现象)所许可的最大速率vm为多大?当超过vm时,将会出现什么现象?(g取10m/s2)解析在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m,最大静摩擦力等于滑动摩擦力,则fm=μmg,则有,可得vm=25m/s=90km/h。当汽车的速度超过90km/h时,需要的向心力大于最大静摩擦力,也就是说提供的向心力不足以维持汽车做圆周运动的向心力,汽车将做离心运动,严重时将会出现翻车事故。答案90km/h汽车做离心运动或出现翻车
本课结束