部编初中数学九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上1.(3分)如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A.1:2 B.1:4 C.1: D.:12.(3分)抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+33.(3分)已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在( )A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限4.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )A. B. C. D.5.(3分)如图,AB是⊙O的直径,AC切⊙O于点D,若∠C=70°,则∠AOD的度数为( )
A.40° B.45° C.60° D.70°6.(3分)在△ABC中,∠C=90°,AC=8,BC=6,则sinB的值是( )A. B. C. D.7.(3分)如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为( )A.10π B. C.π D.π8.(3分)生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=﹣n2+15n﹣36,那么该企业一年中应停产的月份是( )A.1月,2月 B.1月,2月,3月 C.3月,12月 D.1月,2月,3月,12月
9.(3分)如图,在四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A.y= B.y= C.y= D.y=10.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2 B. C. D.二、填空题(本大题共8小题,第11-13每小题3分,第14-18每小题3分,共29分不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)11.(3分)抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为 .12.(3分)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是 .
13.(3分)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是 平方米(结果保留π).14.(4分)如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为 .15.(4分)“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是 .16.(4分)如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC,若sinC=,BC=12,则AD的长 .
17.(4分)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 (结果保留根号).18.(4分)已知正方形ABCD边长为4,点P为其所在平面内一点,PD=,∠BPD=90°,则点A到BP的距离等于 .三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出解题过程或演算步骤19.(12分)如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b﹣<0的解集.(直接写出答案)
20.(10分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.21.(12分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.(10分)已知⊙O是△ABC的外接圆.请根据下列条件,仅用无刻度的直尺,分别在图(1)和图(2)中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,写出结论).
(1)如图(1),AC=BC;(2)如图(2),直线l与⊙O相切于点D,l∥AB.23.(8分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)24.(13分)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.
25.(12分)如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.26.(14分)定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.
(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数y=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.
参考答案一、选择题(本大题共10小题,每小题3分,共30分在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上1.B;2.D;3.B;4.B;5.A;6.A;7.C;8.D;9.C;10.D;二、填空题(本大题共8小题,第11-13每小题3分,第14-18每小题3分,共29分不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)
11.8;12.120°;13.60π;14.3;15.0.4;16.8;17.;18.或;三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出解题过程或演算步骤19【解答】解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,﹣2)在反比例函数y=的图象上,∴n=﹣2,又∵A(﹣2,﹣2),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=2,b=2,∴,y=2x+2;(2)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(﹣2,﹣2),B(1,4),C(0,2),∴AD=2,CO=2,∴△AOC的面积为:S=AD•CO=×2×2=2;(3)由图象知:当0<x<1和﹣2<x<0时函数y=的图象在一次函数y=kx+b图象的上方,
∴不等式kx+b﹣<0的解集为:0<x<1或x<﹣2.20【解答】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是=;故答案为:;(2)将甲、乙两校报名的教师分别记为甲1、甲2、乙1、乙2(注:1表示男教师,2表示女教师),树状图如图所示:
所以P(两名教师来自同一所学校)==.21【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.22【解答】解:(1)如图,直线OC即为所求.(2)如图,直线EC即为所求.
23【解答】解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin30°==,∴CF=15cm,在直角三角形ABG中,sin60°=,∴=,解得:BG=20,又∠ADC=∠BFD=∠BGD=90°,∴四边形BFDG为矩形,∴FD=BG,∴CE=CF+FD+DE=CF+BG+ED=15+20+2≈51.6(cm).答:此时灯罩顶端C到桌面的高度CE是51.6cm.
24【解答】(1)证明:在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴=,同理在△ACQ和△APE中,=,∴=.(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,
∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴=,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得==,∴×=•,∴()2=•,∵GF2=CF•BG,∴MN2=DM•EN.25【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),
∴3=a(0﹣4)2﹣1,a=;∴抛物线的表达式为:y=x2﹣2x+3;(2)相交.证明:连接CE,则CE⊥BD,(x﹣4)2﹣1=0时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB=,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.26【解答】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,
∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,
则S△MON=ON•MH=ON•OMsinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,
∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴=∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).