北师大版高中数学必修第二册课件2.2.2 向量的减法
加入VIP免费下载

北师大版高中数学必修第二册课件2.2.2 向量的减法

ID:1263634

大小:1.1 MB

页数:36页

时间:2022-12-22

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章2.2向量的减法 课标要求1.理解相反向量的概念.2.理解向量减法的意义,掌握向量减法的运算法则及其几何意义.3.能运用向量的加法与减法解决相关问题. 内容索引0102基础落实•必备知识全过关重难探究•能力素养全提升03学以致用•随堂检测全达标 基础落实•必备知识全过关 知识点一相反向量定义若两个向量的长度,方向,则称它们互为相反向量性质①a+(-a)=(-a)+a=0②若a,b互为相反向量,则a=,a+b=0③零向量的相反向量仍是零向量名师点睛相反向量类似于实数中的相反数,它们的性质有相似之处.相等相反-b 过关自诊1.判断正误.(正确的画“√”,错误的画“×”)(1)两个相等向量之差等于0.()(2)互为相反向量的两个向量的长度可以不相等.()(3)向量a与b的差和b与a的差互为相反向量.()2.相反向量就是方向相反的向量吗?××√提示不是.相反向量是方向相反且长度相等的向量. 知识点二向量的减法定义向量a减向量b等于向量a加上向量b的相反向量,即a-b=a+(-b)作法同起点几何意义如果把向量a与b的起点放在点O,那么从向量b的终点B指向被减向量a的终点A,得到的向量就是a-b 名师点睛1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,就可以把减法化为加法.在用三角形法则作向量减法时,只要记住“连接两向量的终点,箭头指向被减向量”即可. 过关自诊1.判断正误.(正确的画“√”,错误的画“×”)(1)两个相等向量之差等于0.()(2)两个相反向量之差等于0.()(3)两个向量的差仍是一个向量.()(4)向量的减法实质上是向量的加法的逆运算.()2.在代数运算中的移项法则,在向量中是否仍然成立?√×√√提示含有向量的等式称为向量等式,在向量等式的两边同时加上或减去同一个向量仍得到向量等式,移项法则对向量等式也是适用的. 3.若a,b是不共线向量,则|a+b|与|a-b|的几何意义分别是什么? 重难探究•能力素养全提升 探究点一向量减法的运算法则【例1】如图,已知向量a,b,c不共线,求作向量a+b-c. 规律方法求两个向量的差,关键是把两向量平移到首首相接的位置,然后利用向量减法的三角形法则来运算.平移作两个向量的差的步骤:此步骤可以简记为“作平移,共起点,两尾连,指被减”. 变式训练1如图,已知向量a,b,c,求作向量a-b-c. 探究点二向量的减法运算【例2】化简下列各式: 规律方法1.向量减法运算的常用方法2.向量加减法化简的两种形式(1)首尾相连则为和;(2)起点相同则为差. 变式训练2化简: 探究点三向量减法运算的几何意义(2)当向量a,b满足什么条件时,四边形ABCD是矩形?(3)当向量a,b满足什么条件时,四边形ABCD是菱形? 规律方法要熟练掌握在三角形、平行四边形等常见图形中,各边对应向量以及对角线对应向量之间的关系,能够运用向量的加法与减法进行正确的表示,同时还要熟悉常见平面图形的几何性质,能够从向量的角度,运用向量语言进行表示. 变式训练3已知△ABC的三个顶点A,B,C及平面内一点P满足,则下列结论正确的是()A.点P在△ABC的内部B.点P在△ABC的边AB上C.点P在AB边所在直线上D.点P在△ABC的外部D所以四边形PBCA为平行四边形.可知点P在△ABC的外部.故选D. 探究点四向量加减法的综合应用 规律方法1.关于向量的加法和减法,一种就是依据三角形法则通过作图来解决,另一种就是通过表示向量的有向线段的字母符号运算来解决.2.用几个向量表示某个向量问题的解题步骤是:第一步,观察向量位置;第二步,寻找(或作)有关的平行四边形或三角形;第三步,利用三角形或平行四边形法则找关系;第四步,化简结果. 变式训练4(1)如图,解答下列各题: 本节要点归纳1.知识清单:(1)向量的减法运算;(2)向量减法的几何意义.2.方法归纳:数形结合、转化.3.常见误区:忽略向量共起点时才可用向量的减法. 学以致用•随堂检测全达标 C A.a+b和a-bB.a+b和b-aC.a-b和b-aD.b-a和b+aB A.平行四边形B.菱形C.矩形D.正方形A 本课结束

资料: 8813

进入主页

人气:

10000+的老师在这里下载备课资料