初中-数学-说课稿-竞赛讲座 08几何变换
加入VIP免费下载

初中-数学-说课稿-竞赛讲座 08几何变换

ID:1264124

大小:124 KB

页数:8页

时间:2023-01-03

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
竞赛专题讲座08-几何变换【竞赛知识点拨】一、平移变换1. 定义设是一条给定的有向线段,T是平面上的一个变换,它把平面图形F上任一点X变到X‘,使得=,则T叫做沿有向线段的平移变换。记为XX’,图形FF‘。2. 主要性质在平移变换下,对应线段平行且相等,直线变为直线,三角形变为三角形,圆变为圆。两对应点连线段与给定的有向线段平行(共线)且相等。二、轴对称变换1. 定义设l是一条给定的直线,S是平面上的一个变换,它把平面图形F上任一点X变到X’,使得X与X‘关于直线l对称,则S叫做以l为对称轴的轴对称变换。记为XX’,图形FF‘。2. 主要性质在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分。三、旋转变换1. 定义设α是一个定角,O是一个定点,R是平面上的一个变换,它把点O仍变到O(不动点),而把平面图形F上任一点X变到X’,使得OX‘=OX,且∠XOX’=α,则R叫做绕中心O,旋转角为α的旋转变换。记为XX‘,图形FF’。其中α0时,为逆时针方向。2.主要性质在旋转变换下,对应线段相等,对应直线的夹角等于旋转角。四、位似变换 1. 定义设O是一个定点,H是平面上的一个变换,它把平面图形F上任一点X变到X‘,使得=k·,则H叫做以O为位似中心,k为位似比的位似变换。记为XX’,图形FF‘。其中k>0时,X’在射线OX上,此时的位似变换叫做外位似;k2AD。∴PQ+QR+RP>2AD。【评注】如果题设中有角平分线、垂线,或图形是等腰三角形、圆等轴对称图形,可以将图形或其部分进行轴对称变换。此外,也可以适当选择对称轴将一些线段的位置变更,以便于比较它们之间的大小。【例7】以△ABC的边AB、AC为斜边分别向外作等腰直角三角形APB、AQC,M是BC的中点。求证:MP=MQ,MP⊥MQ。【分析】延长BP到E,使PE=BP,延长CQ到F,使QF=CQ,则△BAE、△CAF都是等腰三角形。显然:EB,CF,∴EC=BF,EC⊥BF。而PMEC,MQBF,∴MP=MQ,MP⊥MQ。【例8】已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点)【分析】将CC‘,OO’,PP‘,连结OO’、PP‘。则△BOO’、△BPP‘都是正三角形。∴OO’=OB,PP‘=PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。 由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。【例9】⊙O与△ABC的三边BC、CA、AB分别交于点A1、A2、B1、B2、C1、C2,过上述六点分别作所在边的垂线a1、a2、b1、b2、,设a1、b2、c1三线相交于一点D。求证:a2、b1、c2三线也相交于一点。【分析】∵a1、a2关于圆心O成中心对称,∴a1a2。同理,b1b2,c1c2。∴a1、b2、c1的公共点D在变换R(O,180°)下的像D’也是像a2、b1、c2的公共点,即a2、b1、c2三线也相交于一点。【例10】AD是△ABC的外接圆O的直径,过D作⊙O的切线交BC于P,连结并延长PO分别交AB、AC于M、N。求证:OM=ON。【分析】设OO‘,NN’,而MB,∵M、O、N三点共线,∴B、O‘、N’三点共线,且。取BC中点G,连结OG、O‘G、DG、DB。 ∵∠OGP=∠ODP=90°,∴P、D、G、O四点共圆。∴∠ODG=∠OPG,而由MN∥BN’有∠OPG=∠O‘BG,∴∠ODG=∠O’BG,∴O‘、B、D、G四点共圆。∴∠O’GB=∠O‘DB。而∠O’DB=∠ACB,∴∠O‘GB=∠ACB,O’G∥AC,而G是BC的中点,∴O‘是BN’的中点,O‘B=O’N‘,∴OM=ON。

资料: 968

进入主页

人气:

10000+的老师在这里下载备课资料