初中-数学-说课稿-竞赛讲座 16不等式
加入VIP免费下载

初中-数学-说课稿-竞赛讲座 16不等式

ID:1264139

大小:62 KB

页数:4页

时间:2023-01-03

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
竞赛讲座16-不等式不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。一、不等式证明的基本方法1.比较法比较法可分为差值比较法和商值比较法。(1)差值比较法原理 A-B>0A>B.【例1】(l)m、n是奇偶性相同的自然数,求证:(am+bm)(an+bn)<2(am+n+bm+n)。(2)证明:··≤。【例2】设a1≤a2≤…≤an,b1≤b2≤…≤bn,j1,j2,…,jn是1,2,…,n的任意一个排列,令S=a1+a2+…+an,S0=a1bn+a2bn-1+…+anb1,S1=a1b1+a2b2+…+anbn。求证:S0≤S≤S1。(2)商值比较法原理 若>1,且B>0,则A>B。 【例3】已知a,b,c>0,求证:a2ab2bc2c≥ab+cbc+aca+b。2.分析法【例4】若x,y>0,求证:>。【例5】若a,b,c是△ABC的三边长,求证:a4+b4+c40,求证:abc≥(a+b-c)(b+c-a)(c+a-b)。【例7】已知△ABC的外接圆半径R=1,S△ABC=,a,b,c是△ABC的三边长,令S=,t=。求证:t>S。4.反证法【例8】已知a3+b3=2,求证:a+b≤2。5.数学归纳法【例9】证明对任意自然数n,。二、不等式证明的若干技巧无论用什么方法来证明不等式,都需要对数学表达式进行适当的变形。这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口。1.变形技巧【例1】若n∈N,S=++···+, 求证:n

资料: 968

进入主页

人气:

10000+的老师在这里下载备课资料