第二章轴对称单元测试一、选择题1.下列说法中,不正确的是( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为( )A.2aB.C.1.5aD.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cmB.12cmC.9cm和12cmD.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为( )A.2B.3C.4D.56/6
6.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为( )A.0B.1C.2D.37.△ABC中,AB=AC,点D与顶点A在直线BC同侧,且BD=AD.则BD与CD的大小关系为( )A.BD>CDB.BD=CDC.BD<CDD.BD与CD大小关系无法确定8.下列图形中,不是轴对称图形的是( )A.互相垂直的两条直线构成的图形B.一条直线和直线外一点构成的图形C.有一个内角为30°,另一个内角为120°的三角形D.有一个内角为60°的三角形9.在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为( )A.平行B.垂直且平分C.斜交D.垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是( )A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形二、填空题1.正五角星形共有_______条对称轴.2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的,一边长为11cm,则它的周长为________.4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.6/6
5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.6/6
2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.6/6
7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.6/6
参考答案一、1.D2.B3.C4.B5.C6.C7.D8.D9.B10.A二、1.52.3.或4.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴6.80°7.50°8.40°9.5cm10.4三、1.分别以直线,为对称轴,作P点的对应点和,连结交于M,交于N则PM+MN+NP最短.如图所示.2.略3.24.45.∠A=60°,∠B=30°,AD=5cm,DE=5cm,EB=10cm6.先证△ENC≌△DMB(ASA),∴DM=EN.再加上AD=BE即可.7.∵AF=AG,∴∠G=∠AFG.又∵∠ADC=∠GEC,∴AD∥GE.∴∠G=∠CAD.∴∠AFG=∠BAD.∴∠CAD=∠BAD.∴AD平分∠BAC.8.连结AD.在△ADF和△BDE中,可证得:BD=AD,BE=AF,∠B=∠DAF.∴△ADF≌△BDE.∴DE=DF.6/6