2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定
加入VIP免费下载

2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定

ID:1265018

大小:924.5 KB

页数:9页

时间:2023-02-18

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定综合题一.选择题(共6小题)1.下列说法中,正确的是(  )A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等2.下列说法正确的是(  )A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离3.在同一个平面内,不重合的两条直线的位置关系是(  )A.平行B.相交C.平行或相交D.无法确定4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是(  )A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行5.如图,在下列条件中,能够证明AD∥CB的条件是(  )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠36.如图,若AB∥CD,CD∥EF,那么∠BCE等于(  )第9页共9页 A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是  .①相交②不相交③平行④在同一平面内⑤不在同一平面内8.经过直线外一点,有且只有  直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是  .10.不相交的两条直线是平行线.  .(判断对错)11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件:  .第9页共9页 12.在同一平面内,与已知直线a平行的直线有  条;而经过直线外一点P,与已知直线a平行的直线有且只有  条.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?14.请举出生活中平行线的例子.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(  ),∠AGC+∠AGD=180°(  ),所以∠BAG=∠AGC(  ).因为EA平分∠BAG,所以∠1=  (  ).因为FG平分∠AGC,所以∠2=  ,得∠1=∠2(  ),所以AE∥GF(  ).第9页共9页 平行线及其判定综合题参考答案与解析一.选择题(共6小题)1.下列说法中,正确的是(  )A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等【解答】解:A、只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,原说法错误,故本选项不符合题意;B、在同一平面内,不相交的两条直线叫平行线,原说法错误,故本选项不符合题意;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,说法正确,故本选项符合题意;D、两直线平行,同位角相等,原说法错误,故本选项不符合题意.故选:C.【点评】本题考查了邻补角、平行线的概念、垂直的性质、同位角的概念,解题的关键是熟记相关概念并灵活运用.2.下列说法正确的是(  )A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离【解答】解:A、同一平面内,垂直于同一条直线的两直线应是平行不是垂直,故该选项错误;B、根据平行线的性质可知经过直线外一点有且只有一条直线与已知直线平行,该选项错误;C、如果两条平行的直线被第三条直线所截,那么同位角才相等,故该选项错误;D第9页共9页 、从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,这一说法是正确的,故选:D.【点评】本题考查了平行线的性质和判定以及点到直线的距离定义,属于基础性题目.3.在同一个平面内,不重合的两条直线的位置关系是(  )A.平行B.相交C.平行或相交D.无法确定【解答】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.【点评】本题主要考查对平行线和相交线的理解和掌握,能熟练地运用性质进行说理是解此题的关键.4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是(  )A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.5.如图,在下列条件中,能够证明AD∥CB的条件是(  )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠3【解答】解:A、∠1=∠4,则AB∥DE,故选项错误;B、∠B=∠5,则AB∥DE,故选项错误;C、∵∠1+∠2+∠D=180°,即∠BAD+∠D=180°,∴AB∥DE,故选项错误;第9页共9页 D、正确.故选:D.【点评】本题考查了平行线的判定定理,正确理解同位角、内错角、同旁内角的定义是关键.6.如图,若AB∥CD,CD∥EF,那么∠BCE等于(  )A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2【解答】解:∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠DCE+∠2=180°,∴∠BCE=∠BCD+∠DCE=∠1+180°﹣∠2.故选:C.【点评】此题主要考查了平行公理及推论,正确掌握平行线的性质是解题关键.二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是 ⑤ .①相交②不相交③平行④在同一平面内⑤不在同一平面内第9页共9页 【解答】解:如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是不在同一平面内.故答案为:⑤.【点评】本题考查了平行线和相交线,掌握相关定义是解答本题的关键.8.经过直线外一点,有且只有 一条 直线与这条直线平行.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.【点评】本题考查了平行公理,平行公理:经过直线外一点,有且只有一条直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是 棱AD,棱BC. .【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.10.不相交的两条直线是平行线. × .(判断对错)【解答】解:不相交的两条直线是平行线,错误,应为同一平面内,不相交的两条直线是平行线.故答案为:×.【点评】此题主要考查了平行线的定义,关键是注意“同一平面”.11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件: ∠1=100°(答案不唯一) .第9页共9页 【解答】解:能判定AB∥CD的一个条件:∠1=100°(答案不唯一),理由如下:∵∠C=100°,∠1=100°,∴∠C=∠1,∴AB∥CD,故答案为:∠1=100°(答案不唯一).【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.12.在同一平面内,与已知直线a平行的直线有 无数 条;而经过直线外一点P,与已知直线a平行的直线有且只有 1 条.【解答】解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.【点评】本题主要考查平行公理,注意成立的条件.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?【解答】解:在同一个平面内的两条直线一定是平行或相交两种位置关系.【点评】本题考查了同一平面两条直线的位置关系,解决本题的关键是在同一平面内不重合的两条直线,有两种位置关系:相交或平行.14.请举出生活中平行线的例子.【解答】解:①马路上斑马线;②笔直的火车铁轨;③练习簿上的横线;④长方形黑板的上下边沿.【点评】本题主要考查了平行线,熟练掌握平行线的定义是解题的关键.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.第9页共9页 解:因为∠BAG+∠AGD=180°( 已知 ),∠AGC+∠AGD=180°( 邻补角的定义 ),所以∠BAG=∠AGC( 同角的补角相等 ).因为EA平分∠BAG,所以∠1= ∠BAG ( 角平分线的定义 ).因为FG平分∠AGC,所以∠2= ∠AGC ,得∠1=∠2( 等量代换 ),所以AE∥GF( 内错角相等,两直线平行 ).【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.【点评】此题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键第9页共9页

资料: 333

进入主页

人气:

10000+的老师在这里下载备课资料