第八章一元二次方程8.6一元二次方程的应用(四)学习目标:1、经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;2、能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;重点:列一元二次方程解应用题难点:列一元二次方程解应用题一、学前准备还记得本章开始时梯子下滑的问题吗?①在这个问题中,梯子长10m,顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?②如果梯子长度是13米,梯子顶端与地面的垂直距离为12吗,那么梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?二、典型问题例如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。3/3
已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)三、巩固练习1、一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?2、有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。4、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器内只有5L的纯酒精,第一次倒出的酒精多少升?四、拓展训练一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心3/3
海里的圆形区域(包括边界)都属台风区.当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明东北BA理由.学习反思:你有什么收获?你还有什么疑惑?3/3