9.3用图象表示变量之间的关系(1)●教学目标(一)教学知识点1.经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.能从图象中获取变量之间关系的信息,并能用语言进行描述.(二)能力训练要求1.培养学生从图象中获取信息的广泛性和准确性.2.在具体情境中锻炼学生对变量之间关系的敏感和语言描述的合理.(三)情感与价值观要求从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.●教学重点1.用图象表示两个变量之间的关系.2.从图象中获取变量之间关系的信息,并能用语言合理地表示,并能结合具体情境理解图象上的点所表示的数学意义.●教学难点根据图象得出事物变化的规律.●教学方法自主探索法本节课的重点是使学生获得对图象反映变量之间关系的体验,学生可借助于以前读统计图的经验发现两个变量的关系,并尽可能多地从图象中获取信息.●教学过程Ⅰ.创设情景,引入新课[师]我们都知道,人的正常体温是36.5℃左右,这是一个很粗略的说法.你知道人的体温是随时间变化的吗?一天之中,在凌晨2时到6时之间,人的体温最低;在下午5时到8时之间,人的体温最高.在正常情况下,人体温度变化的幅度大约是0.6℃.如果变化幅度超过1℃,特别是在“非典”时期,那就要被“隔离”观察.8/8
在了解人体体温随时间变化的情况之前,我们不妨先来看一下一天天气温度变化的情况.Ⅱ.讲授新课——由学生根据读统计图的经验来自主探索图象中变量之间的关系1.气温变化的情况请你根据图象,与同伴讨论某地某天温度变化情况.(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是几时到达的?最低温度呢?(3)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.图[师]上述问题反映的是哪两个变量的关系?[生]是时间和温度这两个变量的关系,其中时间是自变量,温度是因变量.[师]根据图,同学们可先自己获取上述六个问题的答,并与同伴交流.[生](1)上午9时的温度是27℃,12时是31℃.[师]你是如何从图中读出的?[生]在水平的数轴上找到9,它是表示时间的,过9的一条竖直的线与曲线交于一点,过这一点又有一条水平的线与竖直方向的数轴交于一点,此点表示的正是27℃.[师]很好.8/8
[生](2)这一天最高的温度是37℃,是在15时达到的.因为最高温度应在曲线的最高点处达到,即C点是最高点,过这个点的水平方向就找到最高温度是37℃,竖直方向就找到了达到这温度的时间.同样,最低点D,就表示在3时,这天的气温达到最低温度23℃.[生](3)这天的温差应为最高温度-最低温度=37℃-23℃=14℃.而经过的时间应为3时至15时.(4)温度上升,从图中反映的是曲线上升,观察可得3时到15时温度在上升;温度下降,从图中反映的是曲线下降,观察同样可以得出0时到3时、15时到24时温度在下降.[生](5)图中A点表示的是21时的温度为31℃,B点表示的是0时的温度是26℃.(6)次日凌晨的温度应和前一日凌晨的温度相差不多,所以根据今天的凌晨1时的温度便可预测明日凌晨1时的温度约为24℃.[师]同学们观察图9-4,可知曲线上的点所表示的意义,谁能用自己的语言描述一下呢?[生]曲线上的点表示的是某一时刻这天的温度.[师]而这样的点我们用一条光滑的曲线按时间顺序把它们连起来,就表示了温度随时间变化而变化的情况,它就是温度与时间关系的图象.因此我们又得到了表示变量之间关系的又一种方法——图象法.用这种方法表示变量之间的关系,有何优点.同学们不妨交流一下.[师生共析]用这种方法表示,很直观,一眼就可看出什么时间,一天温度达到最高;什么时间,一天温度达到最低.同时,还能观察出在什么时段内温度在上升,什么时段温度在下降.直观、形象、生动.2.骆驼的体温[师]骆驼被称为“沙漠之舟”,它的体温随时间变化而发生较大的变化,下面是骆驼的体温随时间变化的图象,我们根据它来分析变量之间的关系.8/8
(图中25时表示次日凌晨1时)图(1)一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间?(2)从16时到24时,骆驼的体温下降了多少?(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?(6)你还知道哪些关于骆驼的趣事?与同伴交流.[师]在回答上述六个问题之前,我们先来看一下在这个问题中,哪是自变量,哪是因变量?[生]时间是自变量,骆驼的体温是因变量.[师]联系某天气温变化的图象,我们可以注意在用图象表示变量之间关系时,一般用水平方向上的数轴(即横轴)上的点表示________,用竖直方向的数轴(即纵轴)上的点表示________.[生]用横轴上的点表示自变量,用纵轴上的点表示因变量.[师]下面我就根据图象分析骆驼体温的变化.[生](1)一天中骆驼体温变化的范围是35℃到40℃.它的体温从最低上升到最高需要16时-4时.即需要12个小时(或40-28=12时).(2)16时的温度最高是40℃,24时骆驼的体温下降到了37℃,共下降了3℃.8/8
(3)每天4时到16时体温在上升,0时到4时、16时到24时,体温在下降.(4)从图象中可以看出第二天8时的体温与第一天8时的体温是相同的,其他时刻也是如此.也就是说骆驼在每天的体温变化规律是相同的.因为图象从24时开始复制了0时到24时的图象.(5)A点表示的是12时的温度,与A点表示的温度相同的时刻还有20时的温度及次日12时和20时的温度.(6)一提起骆驼,就想到了沙漠.骆驼之所以称为“沙漠之舟”,是由于骆驼耐饥、耐渴、耐劳又耐风沙,这些特殊的能力而使它成为人类的好朋友.[生]骆驼最明显的特征是长有两个驼峰,一次进食后可以维持较长时间,它的脚掌很大,适宜沙漠行走.骆驼在沙漠上行走总是不紧不慢,踏着很稳健的步伐,但从不停留,靠着一种坚强的意志,到达目的地,我们应学习骆驼这种吃苦耐劳,锲而不舍的精神.……[师]同学们讲了很多关于骆驼的趣事,我们也都知道骆驼是人类的好朋友,人类应该和它们友好相处.在我国的珍稀野生动物中,生命力最强的就是在大漠戈壁深处独来独往,靠喝盐水生存的野骆驼.有关骆驼方面的有关资料同学们可到网上查找.我们研究了体温随时间变化的情况,还记得刚上课时,老师提到的,人的体温也是随时间变化的.同学们可打开课本阅读P174的读一读,你会更好地了解人体正常体温的变化情况.阅读后,和同伴交流你从中获取的信息.Ⅲ.随堂练习1.海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.下面是某港口从0时到12时的水深情况.8/8
图(1)大约什么时刻港口的水最深?深度约是多少?(2)大约什么时刻港口的水最浅?深度约是多少?(3)在什么时间范围内,港口水深在增加?(4)在什么时间范围内,港口水深在减少?(5)A,B两点分别表示什么?还有几时水的深度与A点所表示的深度相同?(6)说一说这个港口从0时到12时的水深是怎样变化的.解:(1)在凌晨3时港口水最深,深度约为7.5米;(2)上午9时港口水最低,深度约为2.4米;(3)在凌晨0时到3时,上午9时到12时,港口的水深在增加;(4)凌晨3时到上午9时,港口的水深在减少.(5)A点表示上午6时港口的水深为5米,B点表示中午12时港口的水深为4.3米,0时水的深度与A点所表示的深度相同.(6)(只要描述的是变化过程合理即可)凌晨0时到3时水深在增加;凌晨3时到上午9时水深在降低;上午9时到12时水深又开始增加.2.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面的哪一个?8/8
图解:根据题意可知,x是自变量,y是因变量,当水深x为0时,注水量y也为0;同时,y随x的增大而增大,因此,应选A.Ⅳ.课时小结这节课从图象中分析了两个变量之间的关系,结合温度的变化直观而形象地从图象中获得了变量之间的有关信息.用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的.Ⅴ.课后作业1.课本习题9.3第1题;2.观察章头图《青春期男女孩身高曲线》并回答相应的问题;3.收集生活中用图象法表示的两个变量之间的关系,并从中获取更多的信息.Ⅵ.活动与探究某气象研究中心观测一场沙尘暴从发生到结束的全过程.开始时风速平均每小时增加2千米,4小时后,沙尘暴开始经过开阔荒漠地,风速变为平均每小时增加4千米,一段时间,风速保持不变.当沙尘暴经过绿色植被区时,其风速每小时平均减少1千米,最终停止.结合风速和时间的图象,回答下列问题:图(1)在纵轴()内填入相应的数值;(2)沙尘暴从发生到结束,共经过了多少小时?8/8
(3)写出当x≥25时,风速y(千米/时)与时间x(小时)之间的关系式.[过程]此题是一个关于环境恶化的一个问题.从题中可以增强同学们的“环保意识”.要回答上述几个问题,首先要读懂题,第二要读懂图.[结果](1)开始时风速平均每小时增加2千米,由图象可知,0时的速度为0千米/时,4小时后,速度y=2×4=8千米/时,所以在y轴的第一个空应填8.接着4时到10时经过荒漠地,每小时平均增加4千米,所以10时,风速已变为8+4×(10-4)=32(千米/时).第二空应填32.(2)由图象可知,当风速为32千米/时时,遇到绿色植被区时,其风速每小时平均减少1千米,最后停止,即风速变为0千米/时,需32小时.所以沙尘暴从发生到结束需25+32=57(小时)(3)当x≥25时,y=57-x.●板书设计§9.3用图象表示变量之间的关系一、图象是表示变量之间关系的又一种方法.1.直观、形象.2.通常用水平方向的数轴上的点表示自变量,用竖直方向的数轴上的点表示因变量.二、随堂练习(由学生板演)8/8