鲁教版七下教案11.3 不等式的解集
加入VIP免费下载

鲁教版七下教案11.3 不等式的解集

ID:1266747

大小:155.5 KB

页数:6页

时间:2023-05-12

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
11.3不等式的解集●教学目标(一)教学知识点1.能够根据具体问题中的大小关系了解不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些概念的含义.3.会在数轴上表示不等式的解集.(二)能力训练要求1.培养学生从现实生活中发现并提出简单的数学问题的能力.2.经历求不等式的解集的过程,发展学生的创新意识.(三)情感与价值观要求从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.●教学重点1.理解不等式中的有关概念.2.探索不等式的解集并能在数轴上表示出来.●教学难点探索不等式的解集并能在数轴上表示出来.●教学方法引导学生探索学习法.●教具准备投影片一张记作(§11.3A)●教学过程Ⅰ.创设问题情境,引入新课[师]上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.[生]不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.6/6 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.[师]很好.在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?[生]记得.能够使方程两边的值相等的未知数的值就是方程的解.求方程的解的过程,叫做解方程.[师]非常好.上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.Ⅱ.新课讲授1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域.已知导火线的燃烧速度为以0.02m/s,人离开的速度为4m/s,那么导火线的长度应为多少厘米?[师]分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:>.解:设导火线的长度应为xcm,根据题意,得>∴x>5.2.想一想(1)x=4,5,6,7.2能使不等式x>5成立吗?(2)你还能找出一些使不等式x>5成立的x的值吗?[生](1)x=5不能使x>5成立,x=6,8能使不等式x>5成立.(2)x=9,10,11…等比5大的数都能使不等式x>5成立.6/6 [师]由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?[生]可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x>5的解.所以不等式的解不唯一,有无数个解.[师]正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solutionset).请大家再类推出解不等式的概念.[生]求不等式解集的过程叫解不等式.3.议一议.请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流.[生]不等式x>5的解集可以用数轴上表示5的点的右边部分来表示(图11-2),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图11-2不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示(图11-3),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图11-3[师]请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明.[生]如x>3,即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.x<3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例题讲解投影片(§11.3A)6/6 根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x-2≥-4;(2)2x≤8(3)-2x-2>-10解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2在数轴上表示为:图11-4(2)根据不等式的基本性质2,两边都除以2,得x≤4在数轴上表示为:图11-5(3)根据不等式的基本性质1,两边都加上2,得-2x>-8根据不等式的基本性质3,两边都除以-2,得x<4在数轴上表示为:图11-6Ⅲ.课堂练习1.判断正误:(1)不等式x-1>0有无数个解;(2)不等式2x-3≤0的解集为x≥.2.将下列不等式的解集分别表示在数轴上:(1)x>4;(2)x≤-1;(3)x≥-2;(4)x≤6.1.解:(1)∵x-1>0,∴x>1∴x-1>0有无数个解.∴正确.(2)∵2x-3≤0,∴2x≤3,∴x≤,∴结论错误.6/6 2.解:图2-8Ⅳ.课时小结本节课学习了以下内容1.理解不等式的解,不等式的解集,解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.Ⅴ.课后作业习题11.3Ⅵ.活动与探究小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?解:不正确.从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3.所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.因此说x<2是不等式x+3<6的解是错误的.●板书设计§11.3不等式的解集一、1.现实生活中的不等式(礼花燃放问题);2.想一想(类推不等式中的有关概念);3.议一议(如何把不等式的解集在数轴上表示出来);4.例题讲解.二、课堂练习6/6 三、课时小结四、课后作业●备课资料参考练习1.用不等式表示:(1)x的3倍大于或等于1;(2)x与5的和不小于0;(3)y与1的差不大于6;(4)x的小于或等于2.2.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.3.不等式x+3≥6的解集是什么?参考答案1.(1)3x≥1;(2)x+5≥0;(3)y-1≤6;(4)x≤2.2.x<3指小于3的所有数,x≤3指小于3的所有数和3;在数轴上表示它们时,x<3不包括3,只是3左边的部分,x≤3不仅包括3左边的部分,而且还包括3.在数轴上表示略.3.x≥3.6/6

资料: 8813

进入主页

人气:

10000+的老师在这里下载备课资料