双曲线的几何性质1
1.椭圆的定义和等于常数2a(2a>|F1F2|>0)的点的轨迹.平面内与两定点F1、F2的距离的2.引入问题:差等于常数的点的轨迹是什么呢?平面内与两定点F1、F2的距离的
①两个定点F1、F2——双曲线的焦点;②|F1F2|=2c——焦距.oF2F1M平面内与两个定点F1,F2的距离的差等于常数的点的轨迹叫做双曲线.的绝对值(小于︱F1F2︱)注意定义:||MF1|-|MF2||=2a
方程图形范围对称性顶点离心率xyB1B2A1A2xyB1B2A1A2关于x轴,y轴,原点对称。关于x轴,y轴,原点对称。
YXF1F2A1A2B1B2焦点在x轴上的双曲线图像
焦点在x轴上的双曲线的几何性质双曲线标准方程:YX双曲线性质:1、范围:x≥a或x≤-a2、对称性:关于x轴,y轴,原点对称。3、顶点A1(-a,0),A2(a,0)4、轴:实轴A1A2虚轴B1B2A1A2B1B25、渐近线方程:6、离心率:e=
XYF1F2OB1B2A2A1焦点在y轴上的双曲线图像
焦点在y轴上的双曲线的几何性质双曲线标准方程:YX双曲线性质:1、范围:y≥a或y≤-a2、对称性:关于x轴,y轴,原点对称。3、顶点B1(0,-a),B2(0,a)4、轴:实轴B1B2;虚轴A1A2A1A2B1B25、渐近线方程:6、离心率:e=c/aF2F2o
例题1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。解:把方程化为标准方程:可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:即
练习题:填表|x|≥618|x|≥3(±3,0)y=±3x44|y|≥2(0,±2)1014|y|≥5(0,±5)