3.1.2复数的几何意义
1.了解复数的几何意义.2.理解复数的模的概念,会求复数的模.
1.如何理解复数与点、向量间的对应关系?剖析:每一个复数都由它的实部和虚部唯一确定.当把实部和虚部作为一个有序数对时,就和点的坐标一样,从而可以用点表示复数.复平面内的每一个点都可以与从原点出发的一个向量一一对应,从而复数也可以与复平面内的向量一一对应.
另外,还应注意以下几点:(1)复数z=a+bi(a,b∈R)的对应点的坐标为(a,b),而不是(a,bi).(2)当a=0时,对任何b≠0,a+bi=0+bi=bi是纯虚数,所以虚轴上的点(0,b)(b≠0)都表示纯虚数.(4)复数z=a+bi(a,b∈R)中的z,书写时应小写,复平面内的点Z(a,b)中的Z,书写时应大写.
2.如何理解复数的模?剖析:从数的角度理解,可类比绝对值是表示这个数的点到原点的距离.从形的角度理解,是该复数对应向量的模,也是向量起点与终点间的距离.
题型一题型二题型三复数的几何意义【例1】在复平面内,O是原点,复数i,1,4+2i对应的点分别是A,B,C.求平行四边形ABCD的顶点D所对应的复数.分析:方法一:复数→点的坐标→中点坐标公式→点D的坐标→点D对应的复数方法二:复数→向量→向量运算→→点D对应的复数
题型一题型二题型三
题型一题型二题型三反思复数的几何意义包含两种情况:(1)复数与复平面内点的对应:复数的实部、虚部分别是该点的横坐标、纵坐标,利用这一点,可把复数问题转化为平面内点的坐标问题.(2)复数与复平面内向量的对应:复数的实部、虚部是对应向量的坐标,利用这一点,可把复数问题转化为向量问题.
题型一题型二题型三【变式训练1】当实数m为何值时,复数z=(m2-8m+15)+(m2+3m-28)i在复平面内的对应点:(1)位于第四象限;(2)位于x轴负半轴上;(3)在上半平面(含实轴).
题型一题型二题型三
题型一题型二题型三复数的模的求法分析:先确定复数的实部、虚部,再代入公式求解.反思复数一般不能比较大小,但复数的模可以比较大小.
题型一题型二题型三【变式训练2】若复数z=1+2i(i是虚数单位),则|z|=.
题型一题型二题型三复数的模的应用【例3】已知复数z=3+ai(a∈R),且|z|