第二课时数学思考 一、学习目标 (一)学习内容 《义务教育教科书数学》(人教版)六年级下册第101页的例2。例2是一个比较复杂的逻辑推理问题,借助列表逐步缩小范围,找到答案,此题让学生体会逻辑推理的常用策略“排除法”。 (二)核心能力 运用“排除法”的策略解决问题,进一步发展演绎推理能力和解决问题的相关能力。 (三)学习目标 1.借助列表法整理信息,运用“排除法”策略,进行推理、判断,得出结论。 2.借助推理的方法解决相关练习,并在解决问题过程中提高演绎推理能力。 (四)学习重点 根据已知条件,运用排除法判断得出结论。 (五)学习难点 在解决问题过程中掌握逻辑推理的思考方法。 (六)配套资源 实施资源:《数学思考》名师教学课件、学习单。 二、教学设计 (一)课堂设计 1.情景引入 师:同学们喜欢看警察叔叔破案的影片吗?警察叔叔根据一些线索进行推理,最终将犯罪分子绳之以法。你们想不想进行推理判断得出正确的结论呢? 课件出示简单的推理问题,学生回答。 (1)小红和小明分别拿着语文书和数学书,小红说:“我拿的不是数学书。”那么,他们两人究竟各拿什么书? 预设:根据小红说的话可知她拿的是语文书,小明拿的是数学书。 (2)小红、小丽、小刚分别拿着语文书、数学书、社会书。小红说:“我拿的是语文书。”小刚说:“我拿的不是数学书。”那么小丽拿的什么书? 预设:根据小红和小刚说的话可知小刚拿的是社会书,小丽拿的是数学书。 小结:同学们对简单的推理问题分析得有理有据,得出了正确的结论。这节课,我们学习较复杂的推理问题。希望同学们积极开动脑筋,作出准确的推理判断。 【设计意图:由简单的推理判断题引入主题,活跃学生思维,激发学生的学习兴趣。】 2.问题探究 (1)分类思考,理解题意 课件出示例2:六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。请问哪两位班长是同班的? ①组织学生读题,理解题意。 ②指名学生说一说题目的意思是什么,并进行集体评议。 使学生明确:这里的A、B、C、D、E、F分别表示3个班的6位班长,每班有2个班长,每次开会,每班只有1位班长参加。 【设计意图:阅读理解环节是解决问题的关键,教师引导学生读题很重要。】 (2)分析与解答 师:第一次到会的有A、B、C,说明A不可能和谁同班?组织学生议一议,并进行交流。 指名学生说一说,并进行集体评议。使学生明确:A不可能和B、C同班。 师:第一次到会的有A、B、C,说明A只能和谁同班?组织学生议一议,并相互交流。 指名学生说一说,并进行集体评议。使学生明确:A只可能和D、E、F同班。 师:第二次有B、D、E,第三次有A、E、F,这些条件又说明了什么?组织学生互相交流,讨论。 指名学生汇报,并集体评议。 师:看了这些条件你有何感想?有没有什么办法,能使这么复杂的条件一目了然呢? 组织学生互相讨论,互相交流。 指名学生汇报,引导学生用列表的方法试一试。 课件展示问题: 用数字“1”表示到会,用数字“0”表示没到会,填写下表: 组织学生独立思考,独立填写。 组织学生互相交流,指名学生汇报。(投影仪) 根据学生的汇报板书: 师:请问哪两位班长是同班的? 指名学生答一答,并进行集体评议。(板书:A、D同班,B、F同班,C、E同班) 师:如果不用列表,能直接根据条件推理吗? 组织学生议一议,互相交流。 指名学生说一说,并进行集体评议。 使学生明确:上面的推理过程用了“排除法”。 【设计意图:在解决问题的过程中,引导学生运用列表法解决问题,借助列表逐步缩小范围,找到答案。在分析和解决问题的过程中让学生体会逻辑推理的常用策略“排除法”。】 3.巩固练习 (1)王阿姨、刘阿姨、丁叔叔、李叔叔分别是工人、教师、军人。王阿姨是教师;丁叔叔不是工人;只有刘阿姨和李叔叔的职业相同。请问他们的职业各是什么? (2)一个学生做了件好事,老师调查是谁做的好事。甲说:是乙做的。乙说:是丁做的。丙说:不是我做的。丁说:乙在说谎。已知这四个人中只有一个人说了实话。那么,说实话的是(),做好事的是()。 4.全课总结 师:通过今天的学习你有什么收获? 小结:从分析题意入手,巧妙借助表格,运用“排除法”策略解决问题。 (三)课时作业 1.我会推理:学校组织了足球、航模和电脑兴趣小组,淘气、笑笑和小明分别参加了其中的一项。已知笑笑不喜欢足球,小明不是电脑兴趣小组的,淘气喜欢航模,画一个表格来帮忙,把信息记录下来,并把推理结果填在括号内。 淘气参加了()兴趣小组;笑笑参加了()兴趣小组;小明参加了()兴趣小组。 答案:航模,电脑,足球。表格如下: 解析:根据题意,三人分别参加了其中的一项。淘气喜欢航模,所以他报了航模兴趣小组;笑笑不喜欢足球,那么他报的应该是电脑兴趣小组;小明不是电脑兴趣小组的,则他参加的应是足球兴趣小组。【考查目标1、2】 2.甲、乙、丙分别在南京、苏州、西安工作,他们的职业分别是工人、医生和教师。已知:①甲不在南京工作;②乙不在苏州工作;③在苏州工作的是工人;④在南京工作的不是教师;⑤乙不是医生。三人各在什么地方工作?各是什么职业? 答案:甲在苏州工作,是工人;乙在西安工作,是教师;丙在南京工作,是医生。 解析:根据条件③和条件④可知,在南京工作的是医生,在苏州工作的是工人,在西安工作的是教师。再结合条件②和条件⑤得出“乙在西安工作,是教师”的结论;最后结合条件①推理出“甲在苏州工作,是工人”“丙在南京工作,是医生”。在解答逻辑推理的题目时,需要深入地理解条件和结论,分析关键所在,以此作为突破口进行合情推理,从而得出正确的结论。【考查目标1、2】