小升初数学必考知识点汇总:图形的认识、测量
加入VIP免费下载

小升初数学必考知识点汇总:图形的认识、测量

ID:169064

大小:15.45 KB

页数:15页

时间:2020-12-18

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
小升初数学必考知识点汇总:图形的认识、测量 (一)图形的认识、测量 量的计量 一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。 二、长度单位: 1 千米=1000 米 1 米=10 分米 1 分米=10 厘米 1 厘米=10 毫米 1 米=100 厘米 1 米=1000 毫米 三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、 平方米、平方分米、平方厘米。 四、测量和计算土地面积,通常用公顷作单位。边长 100 米的正方形土地,面积是 1 公顷。 五、测量和计算大面积的土地,通常用平方千米作单位。边长 1000 米的正方形土地,面积 是 1 平方千米。六、面积单位:(100) 1 平方千米=100 公顷 1 公顷=10000 平方米 1 平方米=100 平方分米 1 平方分米=100 平方厘米 七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米 (升)、立方厘米(毫升)。 八、体积单位:(1000) 1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1 升=1000 毫升 九、常用的质量单位有:吨、千克、克。 十、质量单位: 1 吨=1000 千克1 千克=1000 克 十一、常用的时间单位有: 世纪、年、季度、月、旬、日、时、分、秒。 十二、时间单位:(60) 1 世纪=100 年 1 年=12 个月 1 年=4 个季度 1 个季度=3 个月 1 个月=3 旬 大月=31 天 小月=30 天 平年二月=28 天 闰年二月=29 天 1 天=24 小时1 小时=60 分 1 分=60 秒 十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单 位的名数应该除以进率。 十四、常用计量单位用字母表示: 千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】 一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线; 把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个 端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。 二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短 无关。角的大小的计量单位是(°)。 三、角的分类:小于 90 度的角是锐角;等于 90 度的角是直角;大于 90 度小于 180 度的角 是钝角;等于 180 度的角是平角;等于 360 度的角是周角。 四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。 五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段 的交点叫做三角形的顶点。 六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。 按边分,可以分为等边三角形、等腰三角形和任意三角形。 七、三角形的内角和等于 180 度。 八、在一个三角形中,任意两边之和大于第三边。 九、在一个三角形中,最多只有一个直角或最多只有一个钝角。 十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、 梯形。十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的 长。通过圆心并且两端都在圆的线段叫做圆的直径。 十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就 是轴对称图形。这条直线叫做对称轴。 十三、围成一个图形的所有边长的总和就是这个图形的周长。 十四、物体的表面或围成的平面图形的大小,叫做它们的面积。 十五、平面图形的面积计算公式推导: 【1】平行四边形面积公式的推导过程? ①把平行四边形通过剪切、平移可以转化成一个长方形。 ②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平 行四边形的面积。 ③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。 【2】三角形面积公式的推导过程? ①用两个完全一样的三角形可以拼成一个平行四边形。②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它 等底等高的平行四边形面积的一半 ③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。 【3】梯形面积公式的推导过程? ①用两个完全一样的梯形可以拼成一个平行四边形。 ②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等 于平行四边形面积的一半。 ③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S= (a+b)h÷2。 【4】画图说明圆面积公式的推导过程 ①把圆分成若干等份,剪开后,拼成了一个近似的长方形。 ②长方形的长相当于圆周长的一半,宽相当于圆的半径。 ③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。 十六、平面图形的周长和面积计算公式: 长方形周长 =(长+宽)× 2C = πd S = πr2 长方形面积 = 长 × 宽 C = 2πr S =π()2 正方形周长 = 边长 × 4 r= d÷2 S=π()2 正方形面积 = 边长 × 边长 r=C ÷2π 平行四边形面积 = 底 × 高 d=2r 三角形面积 = 底 × 高 ÷ 2 d=c ÷π十七、常用数据: 常用π值 常用平方数 2π=6.28 12π=37.68 12= 1 3π=9.42 15π=47.1 22=4 4π=12.56 16π=50.24 32=9 5π=15.70 18π=56.5242=16 6π=18.84 20π=62.8 52=25 7π=21.98 25π= 78.5 62=36 8π=25.12 32π=100.48 72=49 9π=28.26 2.25π=7.065 82=64 10π=31.46.25π=19.625 92=81 立体图形【认识、表面积、体积】 一、长方体、正方体都有 6 个面,12 条棱,8 个顶点。正方体是特殊的长方体。 二、圆柱的特征:一个侧面、两个底面、无数条高。 三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。 四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。 五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的 容积。 六、圆柱和圆锥三种关系: ①等底等高: 体积 1︰3 ②等底等体积:高 1︰3 ③等高等体积:底面积 1︰3 七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的 1/3, ②圆柱体积是圆锥的 3 倍, ③圆锥体积比圆柱少 2/3, ④圆柱体积比圆锥多 2 倍。 八、等底等高的圆柱和圆锥:锥 1、差 2、柱 3、和 4。 九、立体图形公式推导: 【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧 面积公式的推导过程) ①圆柱的侧面展开后一般得到一个长方形。 ②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。 ③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。 ④圆柱的侧面展开后还可能得到一个正方形。 正方形的边长=圆柱的底面周长=圆柱的高。 【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似 的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。 ②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 ③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。 【3】请画图说明圆锥体积公式的推导过程? ①找来等底等高的空圆锥和空圆柱各一只。 ②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三 次正好倒完。 ③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和 它等底等高的圆锥体积的三倍。即:V=1/3Sh。 十、立体图形的棱长总和、表面积、体积计算公式: 名称 计算公式 长方体棱长总和 长方体棱长总和 = (长+宽+高)× 4 长方体表面积长方体表面积=(长×宽+长×高+宽×高)×2 长方体体积 长方体体积=长×宽×高 正方体棱长总和 正方体棱长总和=棱长×12 正方体表面积 正方体表面积=棱长×棱长×6 正方体体积 正方体体积=棱长×棱长×棱长 圆柱体侧面积 圆柱体侧面积=底面周长×高 圆柱体表面积 圆柱体表面积=侧面积+底面积×2 圆柱体体积圆柱体体积=底面积×高 圆锥体体积 圆锥体体积=Sh (二)图形与变换 一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲 线应同步平移,旋转相同的角度。 二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽, 三角形的底与高等同时按相同比例放大或缩小。 三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。 (三)图形与位置 一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位 置。 二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。 再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料