2010中考数学热点专题突破训练――动点问题
1、(09包头)如图,已知 中, 厘米, 厘米,点 为 的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
A
Q
C
D
B
P
①若点Q的运动速度与点P的运动速度相等,经过1秒后, 与 是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使 与 全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿 三边运动,求经过多长时间点P与点Q第一次在 的哪条边上相遇?
解:(1)①∵ 秒,
∴ 厘米,
∵ 厘米,点 为 的中点,
∴ 厘米.
又∵ 厘米,
∴ 厘米,
∴ .
又∵ ,
∴ ,
∴ .·························································································· (4分)
②∵ , ∴ ,
又∵ , ,则 ,
∴点 ,点 运动的时间 秒,
∴ 厘米/秒.············································································· (7分) (2)设经过 秒后点 与点 第一次相遇, 由题意,得 , 解得 秒. ∴点 共运动了 厘米. ∵ , ∴点 、点 在 边上相遇, ∴经过 秒点 与点 第一次在边 上相遇.················································ (12分) 2、(09齐齐哈尔)直线 与坐标轴分别交于 两点,动点 同时从 点出发,同时到达 点,运动停止.点 沿线段 运动,速度为每秒1个单位长度,点 沿路线 → → 运动.
(1)直接写出 两点的坐标;
(2)设点 的运动时间为 秒, 的面积为 ,求出 与 之间的函数关系式;
x
A
O
Q
P
B
y
(3)当 时,求出点 的坐标,并直接写出以点 为顶点的平行四边形的第四个顶点 的坐标.
解(1)A(8,0)B(0,6)·················· 1分 (2) 点 由 到 的时间是 (秒) 点 的速度是 (单位/秒)·· 1分 当 在线段 上运动(或0 )时, ··························································································································· 1分 当 在线段 上运动(或 )时, , 如图,作 于点 ,由 ,得 ,··································· 1分 ·················································································· 1分 (自变量取值范围写对给1分,否则不给分.) (3) ··········································································································· 1分 ···························································· 3分
3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切. ∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8),
∴OA=4,OB=8. 由题意,OP=-k,
∴PB=PA=8+k. 在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径,
∴⊙P与x轴相切. (2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E. ∵△PCD为正三角形,∴DE= CD= ,PD=3, ∴PE= . ∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB, ∴ , ∴ ∴ , ∴ , ∴ . 当圆心P在线段OB延长线上时,同理可得P(0,- -8), ∴k=- -8, ∴当k= -8或k=- -8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
解: