2010年云南省昭通市高中(中专)招生统一考试数学试卷
(全卷三个大题,共23个小题,共6页;满分120分,考试用时120分钟) 注意事项:
1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效. 2. 考试结束后,请将试题卷和答题卷一并交回. 一、选择题(本大题共7小题,每小题只有一个正确先项,每小题3分,满分21分) 1.下列结论错误的是 A. B.方程 的解为 C. D. 2.下列图形是轴对称图形的是
A.
B.
C.
D.
3.下列运算正确的是 A. B. C. D. 4.下列事件中是必然事件的是 A. 一个直角三角形的两个锐角分别是 和 B.抛掷一枚硬币,落地后正面朝上 C.当 是实数时, D.长为 、 、 的三条线段能围成一个三角形 5.某物体的三视图如图1所示,那么该物体的形状是 A.圆柱 B.球 C.正方体 D.长方体
图1
图2
6.如图2, , 于 , 交 于 ,已知 ,则 是 A. B. C. D.
图37.二次函数 的图象如图 所示,则下列结论正确的是 A. B. C. D. 二、填空题(本大题共8小题,每小题3分,满分24分) 8. 的相反数是__________. 9.计算: __________. 10.分解因式: __________. 11.如图4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积 万平方米,保留两个有效数字是__________万平方米.
图512.不等式 的解集为_________.
图4
13.如图5, 的弦 , 是 的中点,且 为 ,则 的半径为_________. 14.如果两个相似三角形的一组对应边分别为 和 ,且较小三角形的周长为 ,则较大三角形的周长为__________ . 15.某种火箭被竖直向上发射时,它的高度 与时间 的关系可以用公式 表示.经过________ ,火箭达到它的最高点. 三、解答题(本大题共8小题,满分75分) 16.(7分)先化简再求值: ,其中 .
17.(8分)如图6, 的两条对角线 、 相交于点 . (1) 图中有哪些三角形是全等的? (2) 选出其中一对全等三角形进行证明.
图6
18.(8分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希望.某居民小区开展节约用水活动, 月份各户用水量均比 月份有所下降,其中的 户、 户、 户节水量统计如下表:
户数
节水量(立方米/每户)
(1) 节水量众数是多少立方米? (2) 该小区 月份比 月份共节约用水多少立方米? (3) 该小区 月份平均每户节约用水多少立方米?
19.(9分)全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责任,积极推进节能减排,在全国范围内从 年起,三年内每年推广 万只节能灯.居民购买节能灯,国家补贴 购灯费.某县今年推广财政补贴节能灯时,李阿姨买了 个 和 个 的节能灯,一共用了 元,王叔叔买了 个 和 个 的节能灯,一共用了 元. 求:(1)该县财政补贴 后, 、 节能灯的价格各是多少元? (2) 年我省已推广通过财政补贴节能灯 万只,预计我省一年可节约电费 亿元左右,减排二氧化碳 万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到 )
20.(8分)小颖为学校联欢会设计了一个“配紫色”的游戏;下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘 转出了红色,转盘 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色. (1) 利用树状图或列表的方法表示出游戏所有可能出现的结果; (2) 游戏者获胜的概率是多少?
盘
盘
21.(10分)云南 年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形 (如图 所示), , 为水面,点 在 上,测得背水坡 的长为 米,倾角 ,迎水坡 上线段 的长为 米, . (1) 请你帮技术员算出水的深度(精确到 米,参考数据 ); (2) 就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用 天?(精确到 米)
图7
22.(11分)在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点 是由格点 通过怎样变换得到的? (2)
图8如果建立直角坐标系后,点 的坐标为( , ),点 的坐标为 ,请求出过 点的正比例函数的解析式,并写出图中格点 各顶点的坐标.
23.(14分)如图9,已知直线 的解析式为 ,它与 轴、 轴分别相交于 、 两点,平行于直线 的直线 从原点 出发,沿 轴正方向以每秒 个单位长度的速度运动,运动时间为 秒,运动过程中始终保持 ,直线 与 轴, 轴分别相交于 、 两点,线段 的中点为 ,以 为圆心,以 为直径在 上方作半圆,半圆面积为 ,当直线 与直线 重合时,运动结束. (1) 求 、 两点的坐标; (2) 求 与 的函数关系式及自变量 的取值范围; (3) 直线 在运动过程中, 当 为何值时,半圆与直线 相切?
图9(1)
图9(2)备用图是否存在这样的 值,使得半圆面积 ?若存在,求出 值,若不存在,说明理由.
2010年昭通中考数学答案一、选择题: 1.D 2.B 3.A 4.C 5.D 6.B 7.D 二、填空题: 8. 9. 10. 11. 12. 13. 14. 15. 三、解答题: 16.解: ···················································································································· 5分 当 时,原式 ············································································ 7分 17.解:(1) 、 、 、 ········································································································ 4分 (2)以 为例证明, 四边形 是平行四边形, . 在 和 中, ···································································································· 8分 18.解:(1)节水量的众数是 立方米.································································· 2分 (2)该小区 月份比 月份共节约用水: (立方米).······························································ 5分 (3)该小区 月份平均每户节约用水: (立方米).························································ 8分 19.解:(1)设 节能灯的价格为 元, 节能灯的价格为 元.····················· 1分 则 ······························································································· 2分 解之 ··············································································································· 4分 答:该县财政补贴 后, 节能灯的价格为 元, 节能灯的价格为 元. ····································································································································· 5分 (2)全国一年大约可节约电费: (亿元)······································ 7分 大约减排二氧化碳: (万吨)······················································ 9分 20.解:(1)用树状图表示:
····································································································································· 4分 所有可能结果:(红、黄),(红、绿),(红、蓝),(白、黄),(白、绿),(白、蓝) 6分 (或)用列表表示:
B盘
A盘
黄
绿
蓝
红
(红,黄)
(红,绿)
(红,蓝)
白
(白,黄)
(白,绿)
(白,蓝)(2) (获胜)= .································································································· 8分 21.解:分别过 、 作 于 、 于 ,·································· 1分 在 中, , . , .······································································································ 2分
, , . . 延长 交 于 . 在 中, , , ,······························································································ 6分 .(米)····································· 8分 (2) (米).·········································································· 9分 答:平均每天水位下降必须控制在 米以内,才能保证现有水量至少能使用 天. ··································································································································· 10分 22.解:(1)格点 是由格点 先绕点 逆时针旋转 ,然后向右平移 个长度单位(或格)得到的.····································································································································· 4分 (注:先平移后旋转也行) (2)设过 点的正比例函数解析式为 , 将 代入上式得 , . 过 点的正比例函数的解析式为 .····························································· 8分 各顶点的坐标为: .············································································· 11分 23.解:(1) , 令 ,得 , , . 令 ,得 , .·················································································· 2分 (2) , 是等腰直角三角形. , , 为等腰直角三角形, . . , , .······························································································ 8分 (3) 分别过 、 作 于 、 于F. , 在 中, , , . 当 时,半圆与 相切. 即 , . 当 时,半圆与直线 相切.·················································································· 11分 存在. . . 若 ,则 , , , . 存在 ,使得 .································································ 14分