第六章 万有引力定律(二、万有引力定律)
教学目标 1.在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此规律有初步理解。
2.介绍万有引力恒量的测定方法,增加学生对万有引力定律的感性认识。
3.通过牛顿发现万有引力定律的思考过程和卡文迪许扭秤的设计方法,渗透科学发现与科学实验的方法论教育。
重点难点 1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点,所以要根据学生反映,调节讲解速度及方法。
2.由于一般物体间的万有引力极小,学生对此缺乏感性认识,又无法进行演示实验,故应加强举例。
教 具
卡文迪许扭秤模型。
教学过程
一 引入新课
1.引课:前面我们已经学习了有关圆周运动的知识,我们知道做圆周运动的物体都需要一个向心力,而向心力是一种效果力,是由物体所受实际力的合力或分力来提供的。另外我们还知道,月球是绕地球做圆周运动的,那么我们想过没有,月球做圆周运动的向心力是由谁来提供的呢?(学生一般会回答:地球对月球有引力。)
我们再来看一个实验:我把一个粉笔头由静止释放,粉笔头会下落到地面。
实验:粉笔头自由下落。
同学们想过没有,粉笔头为什么是向下运动,而不是向其他方向运动呢?同学可能会说,重力的方向是竖直向下的,那么重力又是怎么产生的呢?地球对粉笔头的引力与地球对月球的引力是不是一种力呢?(学生一般会回答:是。)这个问题也是300多年前牛顿苦思冥想的问题,牛顿的结论也是:是。
既然地球对粉笔头的引力与地球对月球有引力是一种力,那么这种力是由什么因素决定的,是只有地球对物体有这种力呢,还是所有物体间都存在这种力呢?这就是我们今天要研究的万有引力定律。
板书:万有引力定律
二 教学过程
1.万有引力定律的推导
首先让我们回到牛顿的年代,从他的角度进行一下思考吧。当时“日心说”已在科学界基本否认了“地心说”,如果认为只有地球对物体存在引力,即地球是一个特殊物体,则势必会退回“地球是宇宙中心”的说法,而认为物体间普遍存在着引力,可这种引力在生活中又难以观察到,原因是什么呢?(学生可能会答出:一般物体间,这种引力很小。如不能答出,教师可诱导。)所以要研究这种引力,只能从这种引力表现比较明显的物体──天体的问题入手。当时有一个天文学家开普勒通过观测数据得到了一个规律:所有行星轨道半径的3次方与运动周期的2次方之比是一个定值,即开普勒第
其中m为行星质量,R为行星轨道半径,即太阳与行星的距离。也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。
而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。同时,太阳也不是一个特殊物体,它
用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。这就是牛顿的万有引力定律。如果改其中G为一个常数,叫做万有引力恒量。(视学生情况,可强调与物体重力只是用同一字母表示,并非同一个含义。)应该说明的是,牛顿得出这个规律,是在与胡克等人的探讨中得到的。
2.万有引力定律的理解 下面我们对万有引力定律做进一步的说明:
(1)万有引力存在于任何两个物体之间。虽然我们推导万有引力定律是从太阳对行星的引力导出的,但刚才我们已经分析过,太阳与行星都不是特殊的物体,所以万有引力存在于任何两个物体之间。也正因为此,这个引力称做万有引力。只不过一般物体的质量与星球相比过于小了,它们之间的万有引力也非常小,完全可以忽略不计。所以万有引力定律的表述是:
板书:任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。用公式表示为:
其中m1、m2分别表示两个物体的质量,r为它们间的距离。
(2)万有引力定律中的距离r,其含义是两个质点间的距离。两个物体相距很远,则物体一般可以视为质点。但如果是规则形状的均匀物体相距较近,则应把r理解为它们的几何中心的距离。例如物体是两个球体,r就是两个球心间的距离。
(3)万有引力是因为物体有质量而产生的引力。从万有引力定律可以看出,物体间的万有引力由相互作用的两个物体的质量决定,所以质量是万有引力的产生原因。从这一产生原因可以看出:万有引力不同于我们初中所学习过的电荷间的引力及磁极间的引力,也不同于我们以后要学习的分子间的引力。