人教版六年级数学上册第四单元测试题含答案
(共 4 套)
6 数人教版 第 4 单元 比
第 4 单元跟踪检测卷
一、填一填。(每空 1 分,共 22 分)
1.两个数的比表示( );比的前项除以比的后项所得的商,
叫做( )。
2.( ) :6=1
4
7
18
:( )=2
9
3.3
4
:3
8
的最简单的整数比是( ),比值是( )。
4.( ) :6=12÷18=( )
9
=2:( )=( )(填分数)。
5.乒乓球选手中,男生有 28 人,女生有 16 人,男生人数是女生
人数的( )倍,女生人数与男生人数的最简单的整数比是
( ),男生人数占总人数的( )。6 .一个比的比值是3
2
,如果这个比的后项是 0.4 ,那么前项是
( )。
7.甲数是乙数的3
4
,甲数和乙数的比是( );甲数比乙数少 3
4
,
甲数和乙数的比是( )。
8.李乐去图书馆,已走的路程和剩下的路程的比是 3:5,李乐已
经走了全程的( ),还剩下全程的( )。
9.修一条公路,已经修了全长的2
3
,已修的和未修的比是( ),
未修的和全长的比是( )。
10.如图,把 25 克糖溶解到 200 克水中,糖与水的质量比是
( ),糖与糖水的质量比是( )。
二、辨一辨。(对的在括号里画“√”,错的画“×”)(每题 1 分,共 5 分)
1.马拉松选手跑 40 km,大约需要 2 小时,路程和时间的比是 2:40。
( )
2.比的前项和后项同时乘或除以相同的数,比值不变。 ( )3.0.2:0.1 化简后是 2。 ( )
4.运动队男生、女生的人数比是 8:5,则男生人数是女生人数的
5
8
。
( )
5.一场足球比赛的比分是 2:0,因此,特殊情况下比的后项可以
是 0。 ( )
三、选一选。(把正确答案的字母填在括号里)(每题 2 分,共 10 分)
1.讲数学故事比赛中,女生人数是男生人数的 1 1
4
倍,男生人数和
女生人数的比是( )。
A.54 B.45 C.14
2.4:5 的前项加上 8,后项应( ),比值不变。
A.加上 8 B.减少 8 C.加上 5 D.乘 3
3.100 g 盐水中含盐 20 g,盐和水的质量之比是( )。
A.1:5 B.1:4 C.1:64.六(4)班共有 70 人,男女生人数的比是 4:3,女生有多少人?列
式正确的是( )。
A.70×4
7
B.70×3
7
C.70×3
4
D.70×4
3
5.学校买来 80 本图书,按照一定的比例分配给三个班,正好分完,
三个班分到的图书本数的比可能是( )。
A.2:3:5 B.2:3:4 C.1:2:3 D.3:4:5
四、计算挑战。(共 21 分)
1.化简下面各比。(每题 3 分,共 12 分)
0.12:56 5
6
:10
9
300 cm:50 dm 1
4
升:350 毫升
2.求比值。(每题 3 分,共 9 分)
1.28:0.32 144:72 3
2
时:15 分五、运用比,解决图形问题。(4 分)
将下面方格中的梯形划分成 3 个三角形,使它们的面积比是 1:2:3。
六、运用比,选选手。(每题 2 分,共 8 分)
下面是三名同学某次足球练习情况。
姓名 射门/次 射中/次
张晓 15 6
李欣 10 5
王浩 18 10
1.张晓的射中次数与射门次数的比是( ),比值是( )。
2.李欣的射中次数与射门次数的比是( ),比值是( )。
3.王浩的射中次数与射门次数的比是( ),比值是( )。
4.马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选
手。如果你是体育老师,你会推荐谁去?为什么?七、解决问题。(每题 6 分,共 30 分)
1.池塘里有鲢鱼和鲫鱼共 2700 条,它们的条数之比为 7:11,鲢
鱼和鲫鱼各有多少条?
2.快递员小张今天上午送了 12 份快递,已经送的与今天还要送的
份数比是 3:4,小张今天一共要送多少份快递?
3.学校计划绿化一块 260 m2 的空地,先划出总面积的 3
13
种树,剩
余的按 3:2 的比种花和草,种花和草的面积各是多少平方米?4.配制一种喷洒果树的药水,农药和水的质量比是 1200。如果有 2
kg 的农药,需要加多少千克的水?如果有 2010 kg 的药水,里面
有多少千克的水?
5.下表是合用一个水表的三户居民九月份用水情况,九月份共交
水费 84 元。三家各应交水费多少元?答案
一、1.两个数相除 比值
2.3
2
7
4
3.2:1 2
4.4 6 3 2
3
5.7
4
4:7 7
11
【解析】关注单位“1”的变化。
6.0.6
7.3:4 1:4
8.3
8
5
8
9.2:1 1:3
10.1:8 1:9
【解析】求××与××的比是多少,一定要化成最简单的整数比。
二、1.× 2.× 3.× 4.× 5.×
三、1.B 2.D 3.B 4.B 5.A
四、1. 0.12:56=12:5600
=3:1400
5
6
:10
9
=5
6
× 9
10
=3:4
300 cm:50 dm
=30 dm:50 dm
=30:50
=3:5
1
4
升:350 毫升
=0.25 升:350 毫升
=250 毫升:350 毫升
=5:7
2.1.28:0.32
=1.28÷0.32
=4144:72
=144÷72
=2
3
2
时:15 分
=(3
2
×60)分:15 分
=90:15
=6
五、略。 【解析】答案不唯一。先求各三角形的面积(假设每个小方格面积
是 1 cm2)。
(2+4)×2÷2÷(1+2+3)=1(cm2),
1×1=1(cm2),1×2=2(cm2),
1×3=3(cm2)。
六、1.2:5 2
5
2.1:2 1
2
3.5:9 5
9
4.我会推荐王浩去,因为从比值分析,张晓射中率没过半,李欣射中率刚好是一半,王浩的射中率超过一半,因此,王浩的射中率最大,推
荐王浩去。
七、1.2700÷(7+11)=150(条)
鲢鱼:150×7=1050(条)
鲫鱼:150×11=1650(条)
2.方法一: 12÷3×4+12
=16+12
=28(份)
方法二: 12÷3
4
+12
=28(份)
3.剩余: 260×(1- 3
13
)
=200(m2)
种花: 200÷(3+2)×3
=120(m2)
种草: 200÷(3+2)×2
=80(m2)4.水:2÷ 1
200
=400(kg)
水:2010÷(1+200)×200
=2000(kg)
或:2010×200
201
=2000(kg)
【解析】可以按份数解题,也可以按分率解题。
5. 6:10:8=3:5:4
张奶奶家:84÷(3+5+4)×3
=84÷12×3
=7×3
=21(元)
宋阿姨家:84÷(3+5+4)×5=35(元)
李叔叔家:84÷(3+5+4)×4=28(元)
第 4 单元过关检测卷
一、填空。(每题 2 分,共 24 分)
1.乒乓球每个 2.5 元,羽毛球每个 3.5 元,乒乓球和羽毛球单价的最简整数
比是( ),比值是( )。2. 3
20
=6∶( )=( )
60
=12÷( )=( )(填小数)
3.把 8∶9 的前项加上 16,要使比值不变,后项应加上( )。
4.甲数比乙数多1
8
,甲数与乙数的比是( )。
5.有一个三角形,它的三个内角的度数的比是7∶3∶10,最小的角是( )°,
这是一个( )三角形。
6.走一段路,明明用了 7
12
小时,皓皓用了5
8
小时,明明和皓皓两人速度的最
简整数比是( )∶( )。
7.一条公路修了全长的3
7
,已修和未修的比是( )∶( ),未修和全长的
比是( )∶( )。
8.一个等腰三角形的周长是 60 cm,腰与底的比是 3∶4,这个三角形的腰长
是( )cm,底长是( )cm。
9.一批货物按 2∶3∶4 分配给甲、乙、丙三个队去运,甲队运了这批货物的
( )
( ),丙队比乙队多运这批货物的( )
( )。
10.夏至是一年中白天最长、黑夜最短的一天,其中北京的白天时间与黑夜
时间的比是 5∶3,白天有( )小时,黑夜有( )小时。
11.一根钢管截去4
9
m,截去部分与全长的比是4∶15,这根钢管全长( )m。12.从甲袋中取出1
5
的奶糖放入乙袋,这时两袋奶糖的质量相等,原来甲、乙
两袋奶糖质量的比是( )∶( )。
二、 判断。(对的画“√”,错的画“×”)(每题 1 分,共 6 分)
1.若甲、乙两数的比是 4∶5,则乙数比甲数多1
5
。 ( )
2.比的前项和后项同时乘或除以一个相同的分数,比值不变。( )
3.0.8 m∶4 cm 化成最简的整数比是 1∶5。 ( )
4.一场足球比赛的比分是 2∶0,因此,特殊情况下比的后项也可以是 0。
( )
5.如果 a∶b=7∶11,那么 a=7,b=11。 ( )
6.甲数除以乙数的商是 1.8,甲、乙两数的比是 9∶5。 ( )
三、 选择。(将正确答案的字母填在括号里)(每题 1 分,共 6 分)
1.下列说法错误的是( )。
A.录入一份稿件,甲用 30 分钟,乙用 20 分钟,甲、乙二人工作效率的
比是 2∶3
B.一个三角形三个内角度数的比是 1∶2∶3,这是一个钝角三角形
C.最简整数比的前项和后项一定是互质数
D.一瓶糖水,糖的质量占糖水的 1
10
,糖与水的质量比是 1∶92.比的前项扩大到原来的 2 倍,后项缩小到原来的1
4
,比值就( )。
A.缩小到原来的1
2
B.扩大到原来的 8 倍
C.扩大到原来的 2 倍 D.缩小到原来的1
8
3.六(2)班有学生 45 人,男、女生人数的比不可能是( )。
A.2∶1 B.3∶2
C.4∶5 D.3∶4
4.货车 4 小时行 180 km,客车 3 小时行 180 km。货车和客车的速度的最简
整数比是( )。
A.3∶2 B.9∶20 C.3∶4 D.4∶3
5.两个正方形边长的比是 3∶5,周长的比是( ),面积的比是( )。
A.3∶5 B.9∶25 C.5∶3 D.25∶9
6.用 70 m 长的栅栏靠墙围成一块长方形果园(如图),长与宽的比是 4∶3,
这块长方形果园的面积是( )m2。
A.1200 B.300
C.588 D.294
四、 计算。(每题 12 分,共 24 分)
1.求比值。3
8
∶1
2
0.75∶6
7
24∶3
8
6.4∶0.16 2.25∶5
9
34∶51
2.化简比。
3
2
∶3
7
0.4∶20 6
7
∶0.75
36∶15 2
3
∶3
4
5.6∶4.2五、 动手操作。(每题 3 分,共 6 分)
按要求在下面的方格上画图。(每个小方格的边长是 1 cm)
1.画一个平行四边形,面积是 24 cm 2,底和高的比是 3∶2。
2.画一个三角形,面积是 12 cm 2,底和高的比是 3∶2。
六、 解决问题。(1 题 8 分,6 题 6 分,其余每题 5 分,共 34 分)
1.我国有悠久的青铜器铸造史,先秦古籍《考工记》记载了青铜器铸造的锡、
铜的质量比。经查阅资料可知:鼎的锡、铜的质量比是 1∶5;大刀的锡、
铜的质量比是 1∶2。
(1)一个鼎的质量是 360 kg,含铜和锡各多少千克?
(2)一把大刀含铜的质量是 840 g,这把大刀的质量是多少克?2.阳光小学六年级有 150 人参加学校组织的安全知识竞赛,其中共有 120 人
分别获一、二、三等奖,获一等奖的人数占其中的1
6
,获二、三等奖人数
的比是 2∶3,获一、二三等奖的各有多少人?
3.火药是中国古代四大发明之一。配制黑火药的原料是火硝、硫磺和木炭。
它们质量的比是 15∶2∶3,现在要配制 12 kg 黑火药,三种原料各需要多
少千克?
4.图书室把一些图书按 1∶3∶4 的比借给四、五、六三个年级,已知六年级
比四年级多借了 45 本,三个年级分别借到图书多少本?
5.一家玩具厂生产一批儿童玩具,已经生产了总个数的1
3
,如果再生产 600
个,已完成的个数与剩下的个数的比是 2∶3。这批儿童玩具共有多少个?6.甲、乙两车从相距 630 km 的 A、B 两地同时出发相向而行,3.5 小时相遇。
甲、乙两车的速度比是 5∶4,相遇时甲车行驶了多少千米?答案
一、1.5∶7 5
7
2.40 9 80 0.15 3.18
4.9∶8 5.27 直角 6.15 14 7.3 4 4 7
8.18 24 9.2
9
1
9
10.15 9 11.5
3
12.5 3
二、1.× 2.√ 3.× 4.× 5.× 6.√
三、1.B 2.B 3.D 4.C 5.A B 6.C
四、1.3
4
7
8
64 40 4.05 2
3
2.7∶2 1∶50 8∶7 12∶5 8∶9 4∶3
五、略
六、1.(1)锡:360× 1
1+5
=60(kg)
铜:360× 5
1+5
=300(kg)
(2)840÷2×(1+2)=1260(g)
2.一等奖:120×1
6
=20(人)
120-20=100(人)
二等奖:100× 2
2+3
=40(人)三等奖:100× 3
2+3
=60(人)
3.火硝:12× 15
15+2+3
=9(kg)
硫磺:12× 2
15+2+3
=1.2(kg)
木炭:12× 3
15+2+3
=1.8(kg)
4.45÷(4-1)=15(本)
四年级:15×1=15(本)
五年级:15×3=45(本)
六年级:15×4=60(本)
5.600÷( 2
2+3
-1
3)=9000(个)
6.630÷3.5=180(km) 180× 5
5+4
=100(km)
100×3.5=350(km)
求比值和化简比的能力检测卷
一、我会填。(每空 1 分,共 14 分)
1.( ):32=3:8=( )
24
=30÷( )=( )(填小数)2.3.6 m:0.15 km的比值是( );2
9
: 4
15
化成最简单的整数比是( )。
3.4:3 的前项扩大为原来的 3 倍,要使比值不变,后项应该( )。
4.一个比是3
8
:x,当 x=( )时,比值是 1;当 x=( )时,比值是 3。
5 . 甲 数 是 乙 数 的3
5
( 甲 、 乙 两 数 均 不 为 0) , 甲 数 与 两 数 的 和 的 比 是
( ),乙数与两数差(大数减小数)的比是( )。
6.甲、乙两数的比是 9:10,甲数是 7.2,乙数是( )。
7.甲数是乙数的 1.5 倍(甲、乙两数均不为 0),甲数与乙数的比是( ),甲
数比乙数多( )。
二、我会辨。(每题 1 分,共 3 分)
1.15 kg:3 kg 的比值是 5 kg。 ( )
2.六(1)班男、女生人数的比是 5:4,则男生人数比女生多1
5
。( )
3.小芳与爸爸的身高比是 3:4,爸爸的身高是小芳的3
4
。 ( )
三、我会选。(每题 1 分,共 5 分)
1.一个三角形,三个内角的度数比是 2:3:5,这是一个( )角三角形。
A.锐 B.直 C.钝2.两个正方形,它们边长的比是 5:6,它们的周长比是( )。
A.6:5 B.25:36 C.5:6
3.两个正方形,它们的边长的比是 3:4,它们的面积比是( )。
A.3:4 B.4:3
C.16:9 D.9:16
4.甲数比乙数多3
5
(甲、乙两数均不为 0),乙数和甲数的比是( )。
A.5:8 B.5:2
C.8:3 D.8:5
5.男生人数是全班人数的 5
11
,女生人数与男生人数的比是( )。
A.6:11 B.8:15 C.6:5
四、我会计算。(共 48 分)
1.求比值。(每题 3 分,共 24 分)
4:14 15:75
0.5:0.01 3
4
:5
87
5
:5
7
0.25:3
4
9.1 分钟:0.7 分钟 0.4 kg:100 g
2.化简比。(每题 3 分,共 24 分)
0.125:7
8
5.6:1.4
11
19
:77
38
72:244:1
4
180:120
15 分钟:1 小时 1
6
m:25 cm
五、根据提供的信息,填一填。(每题 6 分,共 12 分)
1.跑步。
(1)明明和强强跑的路程比是( )。
(2)明明和强强跑的时间比是( )。
(3)明明和强强跑的速度比是( )。
2.分析线段图。(1)甲与乙的比是( )。
(2)丙占( ),丙与甲的比是( )。
(3)甲与甲、乙、丙之和的比是( )。
六、我会应用。(每题 6 分,共 18 分)
1.中心小学有男生 500 人,男生人数与全校学生人数的比是 5:9,全校学
生有多少人?女生有多少人?
2.一项工程,由甲、乙两公司合作完成,需投资 40 万元。甲、乙公司按
3:5 的比例投资,各应投资多少万元?3.学校图书室一共购进新图书 400 本,把新图书的2
5
按 3:2 分给低年级和
高年级,低、高年级各分得图书多少本?
答案
一、1.12 9 80 0.375 2.0.024 5:6
3.扩大为原来的 3 倍 4.3
8
1
8
5.3:8 5:2 6.8
7.3:2 1
2
【解析】把 1.5 换成假分数是3
2
,再按份数求它们的比。
二、1.× 2.× 3.×
三、1.B 2.C 3.D 4.A 5.C
四、1. 3
4
:5
8
=3
4
×8
5
=6
5
7
5
:5
7
=7
5
×7
5
=49
25
0.25:3
4
=1
4
:3
4
=1
4
×4
3=1
3
9.1 分钟:0.7 分钟
=9.1:0.7
=91÷7
=13
0.4 kg:100 g
=400 g:100 g
=4
【解析】看清题目要求,如果是求比值,就可采用计算方法,结果可
以是分数或小数或整数。
2. 0.125:7
8
=1
8
:7
8
=1:7
5.6:1.4
=56:14=4:1
11
19
:77
38
=11
19
×38
77
=2
7
=2:7
72:24
=3:1
4:1
4
=16:1
180:120
=18:12
=3:2
15 分钟:1 小时
=15:60=1:4
1
6
m:25 cm
=1
6
m:1
4
m
=1
6
:1
4
=4:6
=2:3
【解析】题目要求化简比,有些题目就可以充分利用比的基本性质,
不管什么方法,确保结果是最简单的整数比。
五、1.(1)1:1 (2)4:5 (3)5:4
2.(1)3:4 (2) 5
12
5:3 (3)1:4
六、1.全校:500÷5×9=900(人)
女生:900-500=400(人)
2.40÷(3+5)=5(万元)
甲:5×3=15(万元)
乙:5×5=25(万元)
3.400×2
5
÷(3+2)=32(本)低年级:32×3=96(本)
高年级:32×2=64(本)
比的应用能力检测卷
一、我会填。(每空 2 分,共 26 分)
1.6
5
:3
2
=8:( )=( )(填小数)
2.小丽跳绳,3 分钟跳了 180 下,她跳的下数和时间的比是( ),比
值是( ),这个比值表示的意义是( )。
3.小红帽到外婆家去,已走的路程和剩下的路程之比是 2:3,小红帽已经
走了全程的( ),还剩下全程的( )。
4.两个正方形边长的比是 4:7,周长的比是( ),面积的比是
( )。
5.从 A 城到 B 城,快车要 6 小时,慢车要 8 小时,快车和慢车行完全程所
需的时间比是( ),快车和慢车的速度比是( )。
6.六(1)班男生人数比女生人数多1
6
,男生人数与全班总人数的比是( )。
7.如果把 4:5 的前项加上 16,要使比值不变,后项应该增加( )。
二、我会辨。(每题 2 分,共 6 分)
1.甲数是乙数的 3 倍(甲、乙两数均不为 0),乙数与甲数的比是 3:1。 ( )
2.a 比 b 少1
9
(a,b 均不为 0),a 与 b 的比是 8:9。 ( )
3.一个正方形的边长是 3.1 cm,周长是 12.4 cm,周长和边长的比是 1:4。
( )
三、我会选。(每题 2 分,共 6 分)
1.0.7 t:0.07 t 的比值是( )。
A.1:10 B.10:1
C.10 t D.10
2.一项工程,甲单独做需要 8 天,乙单独做需要 10 天,甲、乙的工作效
率的比是( )。
A.4:5 B.5:4 C.以上都不对
3.120 克的盐水中有 20 克的盐,盐与水的质量比是( )。
A.5:1 B.1:5
C.4:1 D.1:4
四、我会计算。(共 16 分)
1.求比值。(每题 4 分,共 8 分)
0.75:3
8
4.2:0.632.化简比。(每题 4 分,共 8 分)
4
15
:6
5
2
3
:3
4
五、对比练习。(共 16 分)
1.“中国梦”书法比赛中共有 90 人。
(1)男生和女生的人数比是 2:3,男、女生各有多少人?(5 分)
(2)男生人数和总人数的比是 2:3,男、女生各有多少人?(5 分)
2.“中国梦”书法比赛中男生比女生多 60 人,男生和女生的人数比是 5:3,男、女生各有多少人?(6 分)
六、我会应用。(每题 6 分,共 30 分)
1.舞蹈老师把做 75 个道具的任务按人数的多少分配给六年级三个班,一
班有 48 人,二班有 50 人,三班有 52 人。三个班各应做多少个道具?
2.学校的报告厅装修一共花了 44000 元,材料费和人员工资各花多少元?
3.A、B 两地相距 480 千米。甲、乙两辆汽车同时从两地相向开出,经过
3.2 小时相遇,甲、乙两车的速度比是 3:2,甲、乙两车的速度各是多
少?4.工地上有 10.5 吨水泥和 20 吨黄沙。将水泥和黄沙按 3:5 搅拌成混凝土,
水泥正好用完,黄沙还剩多少吨?
5.学校将 2000 本练习本分给四、五、六三个年级,四年级分得其中的1
4
,
五、六年级分得的练习本本数的比是 2:3。五、六年级各分得多少本?
答案
一、1.10 0.8
2.60:1 60 每分钟跳的下数
3.2
5
3
5
4.4:7 16:49
5.3:4 4:3 6.7:13 7.20
二、1.× 2.√ 3.×
三、1.D 2.B 3.B四、1. 0.75:3
8
=3
4
×8
3
=2
4.2:0.63
=420:63
=60:9
=20:3
=20
3
2. 4
15
:6
5
=4:18
=2:9
2
3
:3
4
=2
3
×4
3
=8:9
五、1.(1)90÷(2+3)=18(人)男生:18×2=36(人)
女生:18×3=54(人)
(2)男生:90×2
3
=60(人)
女生:90-60=30(人)
2.60÷(5-3)=30(人)
男生:30×5=150(人)
女生:30×3=90(人)
六、1.48:50:52=24:25:26
75÷(24+25+26)=1(个)
一班:24×1=24(个)
二班:25×1=25(个)
三班:26×1=26(个)
2.44000÷(7+4)=4000(元)
材料费:4000×7=28000(元)
人员工资:4000×4=16000(元)
3.速度和:480÷3.2=150(千米/小时)150÷(3+2)=30(千米/小时)
甲速度:30×3=90(千米/小时)
乙速度:30×2=60(千米/小时)
4.10.5÷3×5=17.5(吨)
20-17.5=2.5(吨)
【解析】关键要分析出将水泥和黄沙按 3:5 搅拌成混凝土时,水泥用
完了黄沙用了多少吨。
5.2000×(1-1
4
)=1500(本)
1500÷(2+3)=300(本)
五年级:300×2=600(本)
六年级:300×3=900(本)