八年级数学上册期末测试卷
时间:120 分钟满分:150 分
一、选择题(每小题 3 分,共 36 分)
1. 下列四个图案中,是轴对称图形的是( ).
2.等腰三角形的一个内角是 50°,则另外两个角的度数分别是( ).
A.65°,65° B.50°,80° C.65°、65°或 50°、80° D.50°,50°
3.下列式子中,从左到右的变形是因式分解的是( ).
A.(x-1)(x-2)=x -3x+2 B.x -3x+2=(x-1)(x-2)
C.x +4x+4=x(x-4)+4 D.x +y =(x+y)(x-y)
4.具备下列条件的两个三角形,可以证明它们全等的是( ).
A.一边和这一边上的高对应相等 B.两边和第三边上的中线对应相等
C.两边和其中一边的对角对应相等 D.直角三角形的斜边对应相等
5.如果 x -8xy+16y =0,且 x=5,则(2x-3y) =___________.( ).
A. B. C. D.
6.如图,OP 平分∠MON,PA⊥ON 于点 A,点 Q 是射线 OM 上
的一个动点,若 PA=2,则 PQ 的最小值为( ).
A,1 B.2 C.3 D.4
7.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ).
A.∠a=60°,∠a 的补角∠B=120°,∠B>∠a
B.∠a=90°,∠a 的补角∠B=90°,∠B=∠a
2 2
2 2 2
2 2 2
4
25
16
625
16
3025
16
225C.∠a=100,∠a 的补角∠B=80°,∠B<∠aD.两个角互为邻补角
8.如右图,在平面直角坐标系中,点 A(-2,4),点 B(4,2),在 x
轴上找一点 P,使点 P 到点 A 和点 B 的距离之和最小,则点 P
的坐标是( ).
A.(-2,0) B.(4,0) C.(2,0) D.(0,0)
9.下列各组条件中,能判定△ABC≌△DEF 的是( ).
A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC 的周长=△DEF 的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
10.如图,在△ABC 中,边 AB 的垂直平分线分别交 BC、AB 于点 D、E,AE=3cm,
△ADC 的周长为 9cm,则△ABC 的周长是( )
A. 10 cm B. 12 cm C 15 cm D. 17 cm
11 若三点 A、B、C 不在一条直线上,点 P 满足 PA=PB=PC,则平面内这样的
点 P 有( )
A.1 个 B.2 个 C.1 个或 2 个 D.无法确定
12.如右图,在△ABC 中,∠A=30°,将△ABC 绕着 B 点逆时针旋转 40°,到△BDE
的位置,则∠a 的度数是( )
A.40° B.30° C.20° D.10°
二、填空题(每小题 4 分,共 6 分)
13:分解因式:6xy -9x y-y =________.
14.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=10cm,BD=7cm,则点
D 到 AB 的距离是________.
15.若 + =0,则 x+y 的值为_________.
16.如右图,等边三角形 ABC 的边长为 3cm,D、E 分别是 AB、AC 上的点、将
2 2 3
3−x 2+y△ADE 沿直线 DE 折叠,点 A 落在点 A'处,且点 A'在△ABC 外部,则阴影部
分图形的周长为_________cm.
三、解答题(共 98 分)
17.(12 分)先化简,再求值.
(1)(2x-y) -(x-2y)(x+2y)+2y(2x-y)(其中 x=2,y=-1)
(2) (其中 a=-1,b=2)
(3) 已知 a +b +c -2(a+b+c)+3=0,试求 a +b +c -3abc 的值.
18. (8 分)计算或解方程:
(1) (2)
2
)44
1)(22
1)(2
12]()2
1()2
1[( 222 ababbaabba ++−−−−+
2 2 2 3 3 3
30 8)3.14-π(163233 −+−++
4
812 2 −=−− xx
x19.(12 分)如图,(1)画出△ABC 关于 y 轴的对称图形△A B C ;
(2)请计算△ABC 的面积;
(3)直接写出△ABC 关于 x 轴对称的△A B C 的各点坐标.
20.(8 分)在△ABC 中,AB=BC,∠ABC=90°,E 为 CB 延长线上一点,点 F 在 AB
上,且 AE=CF.
求证:BE=BF
21. (8 分)如图所示,在△ABC 中,AB=AC,∠BAC 与∠ACB
的平分线相交于 D 点,∠ADC=130°,求∠CAB 的度数.
1 1 1
2 2 222(8 分)从 A、B 两水库向甲、乙两地调水,其中甲地需水 15 万吨,乙地需水 13
万吨,A、B 两水库各可调出水 14 万吨,从 A 水库到甲地 50 千米,到乙地 30 千
米;从 B 水库到甲地 60 千米,到乙地 50 千米,设计一个调运方案使水的调运总
量(单位:万吨・千米)尽可能大。
23.(12 分)某县为了落实中央的”强基惠民工程”,计划将某村的居民自来水管道进
行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完
成工程所需天数是规定天数的 1.5 倍.如果由甲、乙队先合做 15 天,那么余下的
工程由甲队单独完成还需 5 天,
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为 6500 元,乙队每天的施工费用为 3500 元,为了缩
短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来
完成.则该工程施工费用是多少?24.(8 分)如图所示,在△ABC 中,AB=AC,延长 AB 到 D,使 BD=AB,取 AB
的中点 E,连接 CD 和 CE.求证:CD=2CE。
25.(10 分)如图所示,在△ABC 中,AC=BC,∠ACB=90°,D 是 AC 上的点,AE⊥BD
延长线于 E,且、AE= BD 求:BD 是∠ABC 的角平分线.
26.(12 分)在学习轴对称的时候、老师让同学们思考课本中的探究题,如图(1),、
要在燃气管道 上修建一个泵站、分别向 A、B 两镇供气,泵站修在管道的什么
地方,可使所用的输气管线最短?你可以在 上找几个点试一试、能发现什么规律?
2
1
l
l聪明的小华通过独立思考、很快得出了解决这个问题的正确办法,他把管道 看
成一条直线(图(2)),问题就转化为、要在直线 上找一点 P.使 AP 与 BP 的和最小
他的做法是这样的:
①作点 B 关于直线 的对称点 B 。
②连接 AB 交直线 于点 P,则点 P 为所求。
请你参考小华的做法解决下列问题.如图在△ABC 中、点 D、E 分别是 AB、AC
边的中点,BC=6、BC 边上的高为 4、请你在 BC 边上确定一点 P,使△PDE 的
周长最小。
(1)在图中作出点 P(保留作图痕迹,不写作法)
(2)通过计算写出△PDE 周长的最小值。
l
l
l '
' l参考答案