八年级数学上册12-3乘法公式同步测试题(华东师大版)
加入VIP免费下载

八年级数学上册12-3乘法公式同步测试题(华东师大版)

ID:415222

大小:86.5 KB

页数:3页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 12.3 乘法公式 1.下列算式能用平方差公式计算的是(  ) A.(2a+b)(2b-a) B.( 1 2+x)(- 1 2-x) C.(3x-y)(-3x+y) D.(-m-n)(-m+n) 2.若(ax+3y)2=4x2+12xy+by2,则 a,b 的值分别为(  ) A.a=4,b=3 B.a=2,b=3 C.a=4,b=9 D.a=2,b=9 3.已知 x2+2mx+9 是完全平方式,则 m 的值为(  ) A.1 B.3 C.-3 D.±3 4.为了运用平方差公式计算(x+3y-z)(x-3y+z),下列变形正确的是(  ) A.[x-(3y+z)]2 B.[(x-3y)+z][(x-3y)-z] C.[x-(3y-z)][x+(3y-z)] D.[(x+3y)-z][(x-3y)+z] 5.计算(x+3y)2-(x-3y)2 的结果是(  ) A.12xy B.-12xy C.6xy D.-6xy 6.计算(a+b-c)(a-b-c)的结果是(  ) A.a2-2ac+c2-b2 B.a2-b2+c2 C.a2-2ab+b2-c2 D.a2+b2-c2 7.化简(m2+1)(m+1)(m-1)-(m4+1)的结果是(  ) A.-2m2 B.0 C.-2 D.-2m4 8.对于任意正整数 n,能整除(3n+1)(3n-1)-(3-n)(3+n)的整数是(  ) A.3 B.6 C.9 D.10 9.如图,在边长为 2a 的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个 平行四边形,则该平行四边形的面积为(  ) A.a2+4 B.2a2+4ª C.3a2-4a-4 D.4a2-a-2 10.若 a2-b2=6,a-b=3,则 a+b 的值为________. 11.若 m+n=2,mn=1,则 m2+n2=________. 12.若 a2+b2=7,ab=2,则(a-b)2 的结果是________. 14.用乘法公式计算:(29 2 3)2=________. 15.计算:(a-b+3)(a+b-3)=_________________ 16.已知 x-y=2,则 1 2x2-xy+ 1 2y2=________. 17.观察下列各式:1×3=22-1,3×5=42-1,5×7=62-1,7×9=82-1,……,请你把发现的规律用 含字母 n(n 为正整数)的等式表示为_________________________. 18.运用适当的公式计算:2 (1)(3a-2b)(-3a-2b) (2)(3x-5)2-(2x+7)2; (3)(x+y+1)(x+y-1); (4)(2x-y-3)2. 19.已知 a+b=3,ab=-12,求下列各式的值. (1)a2+b2; (2)(a-b)2. 20.先化简,再求值:(a+b)(a-b)+b(a+2b)-(a+b)2,其中 a=1,b=-2. 21.已知实数 a,b 满足(a+b)2=1,(a-b)2=25,求 a2+b2+ab 的值. 22.已知:a2+2a+b2-6b+10=0,求 ab 的值. 23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图 A 可以用来解释 a2+2ab+b2 =(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解. (1)图 B 可以解释的代数恒等式是_________ (2)现有足够多的正方形和矩形卡片,如图 C: ①若要拼出一个面积为(a+2b)(a+b)的矩形,则需要 1 号卡片_______张,2 号卡片______张,3 号卡片 _______张; ②试画出一个用若干张 1 号卡片、2 号卡片和 3 号卡片拼成的矩形,使该矩形的面积为 2a2+5ab+2b2. 答案: 1----5 DDDCA 6----9 ACDC 10. 2 11. 2 12. 3 13. 0 14. 880 1 9 15. a2-b2+6b-9 16. 2 3 17. (2n-1)(2n+1)=(2n)2-1 18. (1)原式=-9a2+4b2 (2)原式=[(3x-5)+(2x+7)][(3x-5)-(2x+7)] =(3x-5+2x+7)(3x-5-2x-7)=(5x+2)(x-12)=5x2-58x-24 (3)原式=[(x+y)+1][(x+y)-1]=(x+y)2-1=x2+2xy+y2-1 (4)原式=[(2x-y)-3]2=(2x-y)2-6(2x-y)+9=4x2-4xy+y2-12x+6y+9 19. (1)a2+b2=(a2+2ab+b2)[JP2]-2ab=(a+b)2-2ab=33  (2)(a-b)2=a2-2ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab=57  20. 原式=a2-b2+ab+2b2-a2-2ab-b2=-ab, 当 a=1,b=-2 时,原式=2 21. ∵(a+b)2=1,(a-b)2=25,∴a2+b2+2ab=1,a2+b2-2ab=25.∴4ab=-24,ab=-6,∴a2+b2 +ab= (a+b)2-ab=1-(-6)=7 22. ∵a2+2a+[JP]b2-6b+10=0,∴a2+2a+1+b2-6b+9=0,∴(a+1)2+(b-3)2=0,∴a+1=0, b-3=0,∴a=-1,b=3,∴ab=(-1)3=-1 23. (2n)2=4n2 (2) ①(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,即需要 1 号卡片 1 张,2 号卡片 2 张,3 号卡片 3 张,故答案为:1,2,3. ②如图:2a2+5ab+2b2=(2a+b)(a+2b)

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料