第 14 章 勾股定理单元测试
一、选择题:(每小题 4 分,共 32 分)
1、以下列各组数为边长,能组成直角三角形的是( )
A.2,3,4 B.10,8,4
C.7,25,24 D.7,15,12
2、已知一个 Rt△的两边长分别为 3 和 4,则第三边长的平方是( )
A.25 B.14 C.7 D.7 或 25
3、以面积为 9 cm2 的正方形对角线为边作正方形,其面积为( )
A.9 cm2 B.13 cm2
C.18cm2 D.24 cm2
4、如图,直角△ABC 的周长为 24,且 AB:AC=5:3,则 BC=( )
A.6 B.8
C.10 D.12
5、如图,一架云梯长 25 米,斜靠在一面墙上,梯子底端离墙 7 米,如果梯子的顶端下滑 4
米,那么梯子的底部在水平方向上滑动了( )
A.4 米 B.6 米
C.8 米 D.10 米
6、将一根长 24 cm 的筷子,置于底面直径为 5cm、高为 12cm 的圆柱形水杯中,设筷子露在
杯子外面的长为 hcm,则 h 的取值范围是( )
A.5≤h≤12 B.5≤h≤24
C.11≤h≤12 D.12≤h≤24
7、已知,如图,长方形 ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,
使点 B 与点 D 重合,折痕为 EF,则△ABE 的面积为( )A.6cm2 B.8cm2
C.10cm2 D.12cm2
8、已知,如图,四边形 ABCD 中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四
边形 ABCD 的面积为( )
A.36, B.22 C.18 D.12
二、填空题(每小题 3 分,共 21 分)
9、如图中阴影部分是一个正方形,如果正方形的面积为 64 厘米 2,则 X 的长为
厘米。
10、如图,从电线杆离地面 6 米处向地面拉一条长 10 米的缆绳,这条缆绳在地面的固定点
距离电线杆底部为 米。
11、如图,在等腰直角△ABC 中,AD 是斜边 BC 上的高,AB=8,则 AD = 。
12、小华和小红都从同一点 出发,小华向北走了 米到 点,小红向东走了 米到了
点,则 米。
13、如图,在一个高为 3 米,长为 5 米的楼梯表面铺地毯,则地毯长度为 米。
2
O 9 A 12 B
________=AB14、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的
边长为 6cm,则正方形 A,B,C,D 的面积之和为________cm2。
15、如图,一个三级台阶,它的每一级的长、宽和高分别为 20、3、2,A和 B 是这个台阶两
个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面爬到 B 点最
短路程是 。
三、解答题:(共 47 分)
16、(9 分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B 200m,
结果他在水中实际游了 520m,求该河流的宽度为多少?
17、(9 分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得
超过 千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路
面对车速检测仪正前方 米处,过了 秒后,测得小汽车与车速检测仪间距离为 米,这
辆小汽车超速了吗?
70
30 2 5018、(9 分)有一只喜鹊在一棵高 3 米的小树的树梢上觅食,它的巢筑在距离该树 24 米,高
为 14 米的一棵大树上,且巢距大树顶部为 1 米,这时,它听到巢中幼鸟求助的叫声,立刻
赶过去,如果它的飞行速度为每秒 5 米,那么它几秒能赶回巢中?
19、(10 分) 如图,有一个直角三角形纸片,两直角边 AC=18cm,BC=24cm,现将直角边 AC
沿直线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,你能求出 BD 的长吗?
20、(10 分)如图,铁路上 A,B 两点相距 25km,C,D 为两村庄,DA⊥AB 于 A,CB⊥AB 于
B,已知 DA=15km,CB=10km,现在要在铁路 AB 上建一个土特产品收购站 E,使得 C,D 两村
到 E 站的距离相等,则 E 站应建在离 A 站多少 km 处?参考答案
一、选择题:1、C;2、D; 3、C;4、B;5、C;6、C;7、A;8、A;
二、填空题:9、17; 10、8; 11、32; 12、15;
13、7; 14、36; 15、25;
三、解答题:
16、480 米;
17、72 千米/小时>70 千米/小时,
这辆车超速了;
18、5.2 秒;提示:如右图
19、15;
20、10km
第 2 题图 第 3 题图 第 4 题图