绝密★启用前
2019~2020 学年度第二学期高二年级阶段检测
数 学
注意事项:本试卷共 8 页,满分 100 分,考试时间 90 分钟,考试形式为在线考试。
一、单项选择题:本题共 17 小题,每小题 5 分,共 85 分。在每小题给出的四个选项中,只
有一项是符合题目要求的
1.复数 ( 是虚数单位)的虚部是( )
A.1 B. 2 C. D.
2.将 4 个不同的文件发往 3 个不同的邮箱地址,则不同的方法种数为( )
A. B. C. D.
3.函数 的导数为( )
A. B.
C. D.
4.若直线 为函数 图像的切线,则它们的切点的坐标为( )
A. B.
C. 或 D. 或
5.已知 是虚数单位, 且 ,则 ( )
A. B. C. D.
6.从 5 名男医生和 5 名女医生中选 3 人组队参加援汉志愿者医疗队,其中至少有一名女医生
入选的组队方案数为( )
A.180 B.110 C.100 D.120
7.函数 的单调递减区间为( )
A. B.
C. D.
8. 若 成等差数列,则 值为( )
A.14 B.12 C.10 D.8
9.徐州市政有五项不同的工程被三个公司中标,每项工程有且只有一个公司中标,且每个公
司至少中标一项工程,则共有( )种中标情况.
A.100 B. C.180 D.150
10.设复数 满足条件 ,那么 的最大值是( )
A.4 B.16 C.2 D.
11.已知不等式 恒成立,则 a 的取值范围是( )
A. B.
C. D.
12.如果一个三位数,各位数字之和等于 10,但各位上数字允许重复,则称此三位数为“十
全九美三位数”(如 235,505 等),则这种“十全九美三位数”的个数是( )
(2 )i i− i
1 2i+ 2−
43 34 3
4A 3
4C
2xy e−=
2' xy e−=
1' ln( 2 )y x
= −
2' 2 xy e−= − 2 1' ( 2 ) xy x e− −= −
y x b= − +
1y x
=
(1,1) ( 1, 1)− −
2 2− (1,1) ( 1, 1)− −
i Rnm ∈, (1 ) 3m i ni+ = + 2020( )m ni
m ni
+ =−
i i− 1 1−
21 ln2y x x= −
( )1,1− ( ]1,1−
( )0,1 ( )0,+∞
4 5 6, ,n n nC C C n
53
z 1z = 2 2z i+ +
2 2
21 ln 02 x a x+ >
0a ≥ 0e a− < ≤
a e> − 0a ≤A.54 B. 50
C.60 D. 58
13.满足 的最大自然数 =( )
A.7 B.8
C.9 D.10
14.2020 年高考强基计划中,北京大学给了我校 10 个推荐名额,现准备将这 10 个推荐名额
分配给高三理科的 6 个班级,这 6 个班级每班至少要给一个名额,则关于分配方案的种数
为( )
A.462 B. 126
C.210 D.132
15.设实部为正数的复数 ,满足 ,且复数 在复平面上对应的点在第一、
三象限角平分线上,若 为纯虚数,则实数 的值为( ).
A. B. C. D.
16. 函数 在 有极值 10,则 ( )
A.0 B.0 或
C. D.7
17.设 表示不超过 的最大整数(如 , ),对于给定的 ,定义
, ;当 时,函数 的值域是( )
A. B.
C. D.
二、多项选择题:本题共 3 小题,每小题 5 分,共 15 分。在每小题给出的选项中,有多项符
合题目要求。
18.下列关系中,能成立的是( )
A. B.
C. D.
19.已知复数 满足 , ,则实数 的值可能是( )
A.1 B. C.0 D. 5
20.已知函数 ,若对于任意实数 ,实数 可以使不等式 成立,
则 的值不可能为( )
A.0 B. C. D.
1 2 32 3 2020n
n n n nC C C nC+ + + +