七年级数学下册第二章相交线与平行线单元检测卷(北师大版)
加入VIP免费下载

七年级数学下册第二章相交线与平行线单元检测卷(北师大版)

ID:417716

大小:153.34 KB

页数:9页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章达标检测卷 (满分:120 分 时间:90 分钟) 一、选择题(每小题 3 分,共 30 分) 1.下列图形中,∠1 与∠2 互为对顶角的是(  ) 2.如图,O 是直线 AB 上一点,若∠1=26°,则∠AOC 的度数为(  ) A.154° B.144° C.116° D.26°或 154° (第 2 题图)  3.如图,已知直线 a,b 被直线 c 所截,那么∠1 的同旁内角是(  ) A.∠3 B.∠4 C.∠5 D.∠6 (第 3 题图) 4.下列作图能表示点 A 到 BC 的距离的是(  ) 5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判 断直线 l1∥l2 的有(  ) A.1 个 B.2 个C.3 个 D.4 个   (第 5 题图) 6.如图,直线 a,b 与直线 c,d 相交,已知∠1=∠2,∠3=110°,则∠4 的度数为(  ) A.70° B.80° C.110° D.100° (第 6 题图)  7.如图,AB∥CD,CD∥EF,则∠BCE 等于(  ) A.∠2-∠1 B.∠1+∠2 C.180°+∠1-∠2 D.180°-∠1+∠2 (第 7 题图) 8.如图,将一副三角板叠放在一起,使直角的顶点重合于点 O,AB∥OC,DC 与 OB 交于点 E,则∠DEO 的度数为(  ) A.85° B.70° C.75° D.60°   (第 8 题图) 9.如图,E,F 分别是 AB,CD 上的点,G 是 BC 的延长线上一点,且∠B=∠DCG=∠D,则下 列结论不一定成立的是(  )A.∠AEF=∠EFC B.∠A=∠BCF C.∠AEF=∠EBC D.∠BEF+∠EFC=180° (第 9 题图) 10.一次数学活动中,检验两条完全相同的纸带①、②的边线是否平行,小明和小丽采用两 种不同的方法:小明把纸带①沿 AB 折叠,量得∠1=∠2=50°;小丽把纸带②沿 GH 折叠, 发现 GD 与 GC 重合,HF 与 HE 重合.则下列判断正确的是(  ) A.纸带①的边线平行,纸带②的边线不平行 B.纸带①的边线不平行,纸带②的边线平行 C.纸带①、②的边线都平行 D.纸带①、②的边线都不平行 (第 10 题图) 二、填空题(每小题 3 分,共 24 分) 11.如图,∠1 和∠2 是________角,∠2 和∠3 是________角. (第 11 题图) 12.如图是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得 PA= 5.52 米,PB=5.37 米,MA=5.60 米,那么他的跳远成绩应该为________米.     (第 12 题图)  (第 13 题图) 13.如图,直线 AB,CD 交于点 O,OE⊥AB,OD 平分∠BOE,则∠AOC=________°. 14.如图,条件:____________可使 AC∥DF;条件:____________可使 AB∥DE(每空只填一 个条件). (第 14 题图) (第 15 题图) 15.如图是超市里的购物车,扶手 AB 与车底 CD 平行,∠2 比∠3 大 10°,∠1 是∠2 的 20 11 倍,则∠2 的度数是________. 16.一个安全用电标识如图①所示,此标识可以抽象为图②中的几何图形,其中 AB∥CD, ED∥BF,点E、F在线段AC上.若∠A=∠C=17°,∠B=∠D=50°,则∠AED的度数为________. (第 16 题图)      (第 17 题图) 17.如图,AB∥CD,OE 平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE= 1 2(180-a)°;②OF 平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是 ________(填序号). 18.已知 OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为________. 三、解答题(共 66 分) 19.(7 分)已知一个角的余角比它的补角的 2 3还小 55°,求这个角的度数.20.(7 分)用直尺和圆规作图:已知∠1,∠2,求作一个角,使它等于∠1+2∠2. (第 20 题图) 21.(8 分)如图,DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2,试说明:CD⊥AB. 解:∵DG⊥BC,AC⊥BC(已知), ∴∠DGB=∠ACB=90°(垂直定义), ∴DG∥AC(__________________________), ∴∠2=∠________(____________________). ∵∠1=∠2(已知), ∴∠1=∠________(等量代换), ∴EF∥CD(________________________), ∴∠AEF=∠________(__________________________). ∵EF⊥AB(已知), ∴∠AEF=90°(________________), ∴∠ADC=90°(________________), ∴CD⊥AB(________________). (第 21 题图)22.(8 分)如图,直线 AB,CD 相交于点 O,OE 平分∠BOD,OF 平分∠COB,∠AOD∶∠DOE= 4∶1,求∠AOF 的度数. (第 22 题图) 23.(10 分)如图,已知直线 l1∥l2,A,B 分别是 l1,l2 上的点,l3 和 l1,l2 分别交于点 C, D,P 是线段 CD 上的动点(点 P 不与 C,D 重合). (1)若∠1=150°,∠2=45°,求∠3 的度数; (2)若∠1=α,∠2=β,用 α,β 表示∠APC+∠BPD. (第 23 题图) 24.(12 分)如图,已知 BE 平分∠ABD,DE 平分∠BDC,且∠EBD+∠EDB=90°. (1)试说明:AB∥CD; (2)H 是 BE 延长线与直线 CD 的交点,BI 平分∠HBD,写出∠EBI 与∠BHD 的数量关系,并说 明理由. (第 24 题图)25.(14 分)如图,已知 AB∥CD,AD∥BC,∠DCE=90°,点 E 在线段 AB 上,∠FCG=90°, 点 F 在直线 AD 上,∠AHG=90°. (1)找出图中与∠D 相等的角,并说明理由; (2)若∠ECF=25°,求∠BCD 的度数; (3)在(2)的条件下,点 C(点 C 不与 B,H 两点重合)从点 B 出发,沿射线 BG 的方向运动,其 他条件不变,求∠BAF 的度数. (第 25 题图)参考答案与解析 1.C  2.A  3.B  4.B  5.C  6.A  7.C  8.C  9.C 10.B 解析:如图①,∵∠1=∠2=50°,∴∠3=∠1=50°,∠4=180°-∠2=130°. 由折叠可知∠4=∠2+∠5,∴∠5=∠4-∠2=80°.∵∠3≠∠5,∴纸带①的边线不平行.如 图②,∵GD 与 GC 重合,HF 与 HE 重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH +∠EHG=180°,∴纸带②的边线平行.故选 B. (第 10 题答图) 11.同位 同旁内  12.5.37  13.45 14.∠ACB=∠EFD ∠B=∠E 15.55°  16.67°  17.①②③ 18.30°或 150° 解析:∵OA⊥OC,∴∠AOC=90°.∵∠AOB∶∠AOC=2∶3,∴∠AOB= 60°,如答图,∠AOB 的位置有两种情况:一种是在∠AOC 内,一种是在∠AOC 外.(1)当在 ∠AOC 内时,∠BOC=90°-60°=30°;(2)当在∠AOC 外时,∠BOC=90°+60°=150°. 综上可知,∠BOC 的度数为 30°或 150°. (第 18 题答图) 19.解:设这个角的度数为 x,依题意有 2 3(180°-x)-55°=90°-x,(4 分)解得 x=75°. 故这个角的度数为 75°.(7 分) 20.解:略.(7 分) 21.解:同位角相等,两直线平行 ACD 两直线平行,内错角相等 ACD 同位角相等,两 直线平行(4 分) ADC 两直线平行,同位角相等 垂直的定义 等量代换 垂直的定义(8 分) 22.解:∵OE 平分∠BOD,∴∠DOE=∠EOB.(2 分)又∵∠AOD∶∠DOE=4∶1,∠AOD+∠DOE+∠EOB=180°,∴∠DOE=∠EOB=30°,∠AOD=120°,∴∠COB=∠AOD=120°.(5 分)∵OF 平分∠COB,∴∠BOF= 1 2∠COB=60°,∴∠AOF=180°-∠BOF=180°-60°= 120°.(8 分) 23.解:(1)过点 P 向右作 PE∥l1.∵l1∥l2,∴l1∥PE∥l2,∴∠1+∠APE=180°,∠2= ∠BPE.(2 分)∵∠1=150°,∠2=45°,∴∠APE=180°-∠1=180°-150°=30°,∠BPE =∠2=45°,∴∠3=∠APE+∠BPE=30°+45°=75°.(6 分) (2)由(1)知∠1+∠APE=180°,∠2=∠BPE.∵∠1=α,∠2=β,∴∠APB=∠APE+∠BPE =180°-∠1+∠2=180°- α+β,(8 分)∴∠APC+∠BPD=180°-∠APB=180°- (180°-α+β)=α-β.(10 分) 24.解:(1)∵BE 平分∠ABD,DE 平分∠BDC,∴∠ABD=2∠EBD,∠BDC=2∠EDB.(3 分)∵∠EBD +∠EDB=90°,∴∠ABD+∠BDC=2(∠EBD+∠EDB)=180°,∴AB∥CD.(6 分) (2)∠EBI= 1 2∠BHD.(8 分)理由如下:∵AB∥CD,∴∠ABH=∠EHD.(10 分)∵BI 平分∠EBD, ∴∠EBI= 1 2∠EBD= 1 2∠ABH= 1 2∠BHD.(12 分) 25.解:(1)与∠D 相等的角为∠DCG,∠ECF,∠B.(1 分)理由如下:∵AD∥BC,∴∠D= ∠DCG.∵∠FCG=90°,∠DCE=90°,∴∠ECF=∠DCG=∠D.∵AB∥DC,∴∠B=∠DCG= ∠D,∴与∠D 相等的角为∠DCG,∠ECF,∠B.(4 分) (2)∵∠ECF=25°,∠DCE=90°,∴∠FCD=65°.又∵∠BCF=90°,∴∠BCD=65°+90° =155°.(7 分) (3)分两种情况进行讨论:①如答图 a,当点 C 在线段 BH 上时,点 F 在 DA 的延长线上,此 时∠ECF=∠DCG=∠B=25°.∵AD∥BC,∴∠BAF=∠B=25°;(10 分)②如图 b,当点 C 在BH的延长线上时,点F在线段AD上.∵∠B=25°,AD∥BC,∴∠BAF=180°-25°=155°. 综上所述,∠BAF 的度数为 25°或 155°.(14 分) (第 25 题答图)

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料