天添资源网 http://www.ttzyw.com/
天添资源网 http://www.ttzyw.com/
八年级下册期中测试卷(A 卷)
说明:请将答案或解答过程直接写在各题的空白处.本卷满分 100 分.考试时间 90 分钟
一、选择题:(每小题 3 分,共 36 分)
1.(3 分)已知 a>b,下列不等式中正确的是( )
A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D. >
2.(3 分)下列各式从左到右,不是因式分解的是( )
A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)
C.x2﹣4xy+4y2=(x﹣2y)2 D.ma+mb+mc=m(a+b+c)
3.(3 分)下列多项式中,不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2﹣y2 C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
4.(3 分)将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2 的度数是( )
A.65° B.70°
C.75° D.80°
5.(3 分)已知点 P(3﹣m,m﹣1)在第二象限,则 m 的取值范围在数轴上表示正确的是( )
A. B.
C. D.
6.(3 分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
7.(3 分)若 a﹣b=2,ab=3,则 ab2﹣a2b 的值为( )
A.6 B.5 C.﹣6 D.﹣5
8.(3 分)等腰三角形两边长分别为 4 和 8,则这个等腰三角形的周长为( )
A.16 B.18 C.20 D.16 或 20
9.(3 分)如果关于 x 的不等式(a+1)x>a+1 的解集为 x<1,那么 a 的取值范围是( )
A.a>0 B.a<0 C.a>﹣1 D.a<﹣1
10.(3 分)已知△ABC 中,求作一点 P,使 P 到∠A 的两边的距离相等,且 PB=PC,则下列确定 P 点的方法正确的
是( )
A.P 是∠A 与∠B 两角平分线的交点 B.P 是 AC、AB 两边上中垂线的交点
C.P 是∠A 的角平分线与 BC 的中垂线的交点 D.P 是∠A 的角平分线与 AB 的中垂线的交点
11.(3 分)某校举行关于“保护环境”的知识竞赛,共有 25 道题,答对一题得 10 分,答错(或不答)一题倒
扣 5 分,小明参加本次竞赛,得分超过了 100 分,则他至少答对的题数是( )
A.17 B.16 C.15 D.12
12.(3 分)如图所示,在△ABC 中,已知点 D,E,F 分别为边 BC,AD,CE 的中点,且 S△ABC=4cm2,则 S 阴影等于
( )
A.2cm2 B.1cm2
C. cm2 D. cm2
二、填空题(每小题 3 分,共 12 分)
13.(3 分)分解因式:4x2﹣8x+4= .
14.(3 分)如图,△ABC 中,AD⊥BC,AE 是∠BAC 的平分线,∠B=60°,∠BAC=84°,则∠DAE= .
15.(3 分)如图,已知一次函数 y1=kx1+b1 与一次函数 y2=kx2+b2 的图象相交于点(1,2),则不等式 kx1+b1<kx2+b2
的解集是 .
16.(3 分)如图,已知 Rt△ABC 中,AC⊥BC,∠B=30°,AB=10,过直角顶点 C 作 CA1⊥AB,垂足为 A1,再过 A1
作 A1C1⊥BC,垂足为 C1,过 C1 作 C1A1⊥AB,垂足为 A2,再过 A2 作 A2C2⊥BC,垂足为 C2,…,这样一直做下去,
得到了一组线段 A1C1,A2C2,…,则 A1C1= ;则 A3C3= ;则 AnCn= .
三、解答题(本部分共 7 题,合计 52 分)
17.(12 分)计算:
(1)解不等式:x﹣(2x﹣1)≤3
学校 姓名 年级
密 封 线 内 不 要 答 题
密
封
线3/ 4 4/ 4
(2)解不等式组: ,并把它的解集在数轴上表示出来.
(3)因式分解:﹣4a2x+12ax﹣9x.
18.(5 分)先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中 x= ,m=3.
19.(6 分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,Rt△OAB
的 B 点在第三象限,到 x 轴的距离为 3,到 y 轴的距离为 4,直角顶点 A 在 y 轴,画出△OAB.
①点 B 的坐标是 ;
②把△OAB 向上平移 5 个单位后得到对应的△O1A1B1,画出△O1A1B1,点 B1 的坐标是 ;
③把△OAB 绕原点 O 按逆时针旋转 90°,画出旋转后的△O2A2B2,点 B2 的坐标是 .
20.(6 分)如图,在 Rt△ABC 中,∠C=90°,∠A=30°,∠ABC=60°,AB 的垂直平分线分别交 AB,AC 于
点 D,E.
(1)求证:AE=2CE;
(2)求证:DE=EC.
21.(6 分)某产品生产车间有工人 10 名.已知每名工人每天可生产甲种产品 12 个或乙种产品 10 个,且每生
产一个甲种产品可获利润 100 元,每生产一个乙种产品可获利润 180 元.在这 10 名工人中,如果要使此车间每
天所获利润不低于 15600 元,你认为至少要派多少名工人去生产乙种产品才合适.
22.(8 分)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都
是每人 400 元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有
游客全部享受 6 折优惠.”则:
(1)设学生数为 x(人),甲旅行社收费为 y 甲(元),乙旅行社收费为 y 乙(元),两家旅行社的收费各是多少?
(2)哪家旅行社收费较为优惠?
23.(9 分)如图,已知△ABC 中 AB=AC=12 厘米,BC=9 厘米,点 D 为 AB 的中点.
(1)如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上由 C 点向 A 点运
动.
①若点 P 点 Q 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点 P 点 Q 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边
运动,求经过多长时间,点 P 与点 Q 第一次在△ABC 的哪条边上相遇?
密
封
线3/ 4 4/ 4
八年级下册期中测试卷(A 卷)答案
一、选择题
1—5 DABAA 6—10 DCCDC 11-12 CB
二、填空题
13.4(x﹣1)2 14. 12° 15. x<1
16.
,5×( )6,5×( )2n
三、解答题
17、【解答】解:(1)去括号得,x﹣2x+1≤3,移项得,x﹣2x≤3﹣1,
合并同类项得,﹣x≤2,把 x 的系数化为 1 得,x≥﹣2;
(2)由①得,x≥﹣3,由②得,x<2,故不等式组的解集为:﹣3≤x<2.
在数轴上表示为: ;
(3)原式=﹣x(4a2﹣12a+9)=﹣x(2a﹣3)2.
18、【解答】解:4x(m﹣1)﹣3x(m﹣1)2=(m﹣1)[4x﹣3x(m﹣1)]
=(m﹣1)(4x﹣3mx+3x),
=(m﹣1)(7x﹣3mx),
当 x= ,m=3 时,原式=(3﹣1)(7× ﹣3×3× )=2×(﹣3)=﹣6.
19、【解答】解:①点 B 的坐标是(﹣4,﹣3);
②如图,△O1A1B1 为所作,点 B1 的坐标是(﹣4,1);
③如图,△O2A2B2 为所作,点 B2 的坐标是(3,﹣4).
故答案为(﹣4,﹣3),(﹣4,1),(3,﹣4).
20、【解答】解:(1)连接 BE,∵在△ABC 中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,
∵DE 是 AB 的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,
在 Rt△BCE 中,BE=2CE,∴AE=2CE;
(2)∵BE=2CE,AE=2CE;∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=∠ABE=30°,
∵DE⊥AB,∠C=90°,∴DE=CE.
21、【解答】解:设车间每天安排 x 名工人生产甲种产品,其余工人生产乙种产品.
根据题意可得,12x×100+10(10﹣x)×180≥15600,解得;x≤4,∴10﹣x≥6,
∴至少要派 6 名工人去生产乙种产品才合适.
22、【解答】解:(1)根据题意得,
甲旅行社时总费用:y 甲=400+400×50%x, 乙旅行社时总费用:y 乙=400×60%(x+1);
(2)设我校区级“三好学生”的人数为 x 人,根据题意得:400+400×50%x<400×60%(x+1),解得:x>10,
当学生人数超过 10 人,甲旅行社比较优惠,当学生人数 10 人之内,乙旅行社比较优惠,刚好 10 人,两个
旅行社一样.
23、【解答】解:(1)①∵t=1(秒),∴BP=CQ=3(厘米),∵AB=12,D 为 AB 中点,∴BD=6(厘米)
又∵PC=BC﹣BP=9﹣3=6(厘米),∴PC=BD,∵AB=AC,∴∠B=∠C,
在△BPD 与△CQP 中, ,∴△BPD≌△CQP(SAS),
②∵VP≠VQ,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能 BP=CP=4.5,
∵△BPD≌△CPQ,∴CQ=BD=6.∴点 P 的运动时间 t= = =1.5(秒),
此时 VQ= = =4(厘米/秒).
(2)因为 VQ>VP,只能是点 Q 追上点 P,即点 Q 比点 P 多走 AB+AC 的路程,
设经过 x 秒后 P 与 Q 第一次相遇,依题意得 4x=3x+2×12,
解得 x=24(秒)
此时 P 运动了 24×3=72(厘米)
又∵△ABC 的周长为 33 厘米,72=33×2+6,
∴点 P、Q 在 BC 边上相遇,即经过了 24 秒,点 P 与点 Q 第一次在 BC 边上相遇.