教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。)
教学要求:
1.进一步理解和掌握平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解决生活中的相关问题,提高学生运用知识解决问题的能力。2.养成良好的审题习惯。
教学重点:运用所学知识解答生活中的相关问题。
教具准备:长方体木框。
教学过程:
一、基本练习
1、上节课我们学习了平行四边形的计算公式,谁能说说平行四边形的面积是什么?它是怎样推导出来的?2、.口算下面各平行四边形的面积。(1)底12米,高7米;(2)高13分米,第6分米;(3)底2.5厘米,高4厘米3.填空:1平方米=( )平方分米 1公顷=( )平方米 150平方厘米=( )平方分米 3.6平方米=( )平方分米0.54平方分米=( )平方厘米二、指导练习1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?(1)生独立列式解答,集体订正。(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?讨论归纳后,生自己列式解答:58500÷(250×78÷1000)(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。2.练习十五第5题:a、你能找出图中的两个平行四边形吗?b、生计算每个平行四边形的面积。c、他们的面积相等吗?为什么?如果学生有困难,可以引导他们观察两个平行四边形的底和高有什么特点。d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)3.练习十五6题让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)4.练习十五第7题。老师出示一个长方形木框,慢慢拉成一个平行四边形。继续拉,让平行四边形的形状发生变化。让学生观察后说一说,什么没变?什么变了?师概括:木框4条边的长度没变,也就是周长没变。但拉成平行四边形后,底边上的高变了,面积也就变小了。思考:什么情况下面积最大?小组讨论后交流。5.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。三、课堂练习:练习十五第7题。四、作业:练习十五第4题。教学反思:本课最成功之处是采用了长方形磁条教学第7题。我先将磁性长方形框架吸在黑板上,描出其形状,然后拉动框架,再描出平行四边形。通过形象图示的观察,学生很快就理解了面积发生变化的原因,看来直观感受胜于说教。虽然本课变式练习较多,但学生掌握起来难度不大,反倒是我未曾预料到的单位换算成了作业难点,看来学生原有基础知识薄弱再次成为教学的瓶颈。因此再教时,我会在基本练习中补充单位换算(已对教案进行了修改)。如果练习效果不佳,我还将对所有面积单位进行梳理,对换算方法进行复习。梳理图如下:平方千米 100 公顷 10000 平方米 100 平方分米 100 平方厘米 ×进率高级单位 低级单位 ÷进率同时,还可以把基本练习中的数据适当进行变化,以此来复习和巩固长度单位的换算。如可将第2小题的高改为1米3分米,将第3小题的高改为0.4分米。