2020届高三全国名校联考12月月考物理带电粒子在磁场运动综合计算试题及答案
加入VIP免费下载

2020届高三全国名校联考12月月考物理带电粒子在磁场运动综合计算试题及答案

ID:430728

大小:379.88 KB

页数:12页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020 届高三全国名校 12 月月考物理带电粒子在磁场运动综合计算试题及答 案 1、(2020·湖南省高三上学期第三次月考)如图 a 所示,匀强磁场垂直于 xOy 平面,磁感 应强度 B1 按图 b 所示规律变化(垂直于纸面向外为正).t=0 时,一比荷为 C/kg 的带正电粒子从 原点沿 y 轴正方向射入,速度大小 ,不计粒子重力. ⑴求带电粒子在匀强磁场中运动的轨道半径. ⑵求 时带电粒子的坐标. ⑶保持 b 中磁场不变,再加一垂直于 xOy 平面向外的恒定匀强磁场 B2,其磁感应强度为 0.3T,在 t=0 时, 粒子仍以原来的速度从原点射入,求粒子回到坐标原点的时刻. 【答案】(1)1m (2)[3.41m,﹣1.41m] (3) 【解析】 试题分析: (1)带电粒子在匀强磁场中运动,洛仑兹力提供向心力, r =1m (2)带电粒子在磁场中运动的周期, s 51 10q m = × 45 10 m/sv = × 4102t s π −= × 4 1 2 104t n s﹣( )π π= + × 4 2 2 1 10 01 2t n s nπ= + × = …﹣( ) ( ,,, ). 2 1 vqvB m r = 4 0 2 2 105 rT v π π −= = ×在 0~ s 过程中,粒子运动了 ,圆弧对应的圆心角, 在 s ~ s 过程中,粒子又运动了 ,圆弧对应 圆心角, 轨迹如图 a 所示,根据几何关系可知, 横坐标: m 纵坐标: m 带电粒子的坐标为(3.41m,-1.41m) (3)施加 B2=0.3T 的匀强磁场与原磁场叠加后,如图 b 所示, ①当 (n=0,1,2,…)时, s ②当 (n=0,1,2,…)时, 粒子运动轨迹如图 c 所示,则粒子回到原点的时刻为, (n=0,1,2,…) 考点:带电粒子在磁场中的运动 【名师点睛】此题是带电粒子在磁场中的运动问题,解题时要通过磁场的变化情况分析粒子的受力变化情 况,画出粒子运动的轨迹图,结合几何关系求解;注意问题的多解情况. 的 4104 π −× 05 8 T 1 5 4 πθ = 4104 π −× 4102 π −× 05 8 T 2 5 4 πθ = 2 2 sin (2 2)m 3.414x r r π= + = + ≈ 2 cos 2m 1.414y r π= − = − ≈ − 2 TnT t nT≤ < + ( ) 4 1 1 2 2 104 mT q B B π π −= = ×+ ( 1)2 TnT t n T+ ≤ < + ( ) 4 2 1 2 2 10 smT q B B π π −= = ×− 4 1 ( 2 ) 10 s4t n π π −= + × 4 2 2( 1) 10 st n π −= + ×2、(2020·广西省名校高三上学期 12 月模拟)如图所示,在边长为 L 正方形区域内有垂直纸面向里的匀 强磁场,在区域中心处有一粒子源 P,粒子源 P 沿平行纸面的各个方向均匀地射出大量的质量为 m、电荷 量为 q、速度为 v 的相同粒子,不计粒子的重力及粒子间的作用力,问: (1)若要使所有粒子都无法射出磁场区域,求区域内磁感应强度的最小值 B0; (2)若区域内匀强磁场的磁感应强度为 B0,求该区域内没有粒子到达的地方的面积; (3)若区域内磁感应强度 ,求能从边界逸出的粒子数与 P 点射出的总粒子数的比值 k。 【答案】(1) ;(2) ;(3) 【解析】 (1)如图 由几何关系知粒子运动的轨道半径 再由磁场中粒子运动规律 的 (2 3)mB qL υ+= 0 4mvB qL = 2(1 )4S L π= − 2 3k = 4 Lr ≤即 联立解得 故区域内磁感应强度的最小值 (2)如图 可知所有轨道的包络线(虚线)为半径为 的圆,故粒子无法到达的地方的面积 (3)设此时粒子运动轨道半径为 ,把 2vqBv m r = mvr qB = 4mvB qL ≥ 0 4mvB qL = 2 2 Lr = 2 2 2(2 ) (1 )4S L r L ππ= − = − r′ (2 3)mvB qL +=代入 ,解得 能够从边界逸出的粒子轨道如图所示 由图中几何关系得 解得 两边界对应的速度夹角 故 3、(2020·福建省厦门市双十中学高三上学期 12 月月考)如图所示,在 xOy 平面内,有边长为 L 的等边三 角形区域 OPQ,PQ 边与 x 轴垂直,在三角形区域以外,均存在着磁感应强度大小为 B,方向垂直于纸面向 外的匀强磁场,三角形 OPQ 区域内无磁场分布。现有质量为 m,带电量为+q 的粒子从 O 点射入磁场,粒 mvr qB ′ = (2 3)r L′ = − (2 3)2cos (2 3) L L L θ − − = − 30θ °= 2 60a θ °= = 4 240 2 2 360 3k α π ° °= = =子重力忽略不计。 (1)若要使该粒子不出磁场,直接到达 P 点,求粒子从 O 点射入的最小速度的大小和方向; (2)若粒子从 O 点以初速度 沿 y 轴正方向射入,能再次经过 O 点,试画出粒子运动的轨迹图并 求该粒子从出发到再次过 O 点所经历的时间。 【答案】(1) , 方向垂直于 OP 向上或与 y 轴正半轴成 30°角斜向左上。 (2) 【解析】 (1)粒子运动轨迹如图所示: 当初速度 v1 垂直于 OP 射入磁场时,粒子射入速度最小。由几何关系得: 由牛顿第二定律得: 解得: 0 3qBL 6mv = 1 2 qBLv m = 1 26 3 (4 3 3) mt t t qB π= + = + 1 2 Lr = 2vqvB r =方向垂直于 OP 向上或与 y 轴正半轴成 30°角斜向左上。 (2)若粒子从 0 点以初速度 沿 y 轴正方向射入 由牛顿第二定律得: 解得: 粒子运动轨迹如图所示: 粒子从 O 运动至 A 点出磁场进入三角形区域,由几何关系得: 圆心角 ,运动时间: 粒子从 A 到 B 做匀速直线运动,运动时间: 1 2 qBLv m = 0 3 6 qBLv m = 2vqvB r = 0 2 3 6 mvr LqB = = 23 2 LOA r= = A 120OO °′∠ = 1 1 2 3 3 mt T qB π= = 2 0 3ABs mt v qB = =由运动轨迹可知,粒子可以回到 O 点,所用时间为: 4、(2020·辽宁省辽河油田二中高三上学期 12 月摸底考试)如图所示,在磁感应强度 B=1.0T,方向竖直 向下的匀强磁场中,有一个与水平面成 θ=37°角的导电滑轨,滑轨上放置一个可自由移动的金属杆 ab.已 知接在滑轨中的电源电动势 E=12V,内阻不计.ab 杆长 L=0.5m,质量 m=0.2kg,杆与滑轨间的动摩擦因 数 μ=0.1,滑轨与 ab 杆的电阻忽略不计.求:要使 ab 杆在滑轨上保持静止,滑动变阻器 R 的阻值在什么 范围内变化?(g 取 10m/s2,sin37°=0.6,cos37°=0.8,可认为最大静摩擦力等于滑动摩擦力,结果保留一位 有效数字) 【答案】3Ω≤R≤5Ω 【解析】 ab 杆在恰好不下滑和恰好不上滑这两种情况下的受力分析,当 ab 杆恰好不下滑时,如图甲所示: 由平衡条件得,沿斜面方向 垂直斜面方向 1 26 3 (4 3 3) mt t t qB π= + = + 1 1sin cosNmg F Fθ µ θ= + 安而 解得 R1=5Ω 当 ab 杆恰好不上滑时,如图乙所示: 由平衡条件得,沿斜面方向 垂直斜面方向 而 解得: R2=3 Ω. 1 1cos sinNF mg Fθ θ= + 安 2 2 = EF B LR安 2 2sin cosNmg F Fθ µ θ= + 安 2 cos sinNF mg Fθ θ= + 安2 2 2 = EF B LR安所以,要使 ab 杆保持静止,R 的取值范围是 3 Ω≤R≤5Ω. 5、(2020·辽宁省辽河油田二中高三上学期 12 月摸底考试)如图所示,在空间有一直角坐标系 xOy,直线 OP 与 x 轴正方向的夹角为 30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线 OP 是他们的理想边界,OP 上方区域Ⅰ中磁场的磁感应强度为 B.一质量为 m,电荷量为 q 的质子(不计重力, 不计质子对磁场的影响)以速度 v 从 O 点沿与 OP 成 30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场 区域Ⅰ和Ⅱ后,恰好垂直打在 x 轴上的 Q 点(图中未画出),试求: (1)区域Ⅱ中磁场的磁感应强度大小; (2)Q 点到 O 点的距离. 【答案】(1) ;(2) 【解析】 试题分析:(1)设质子在匀强磁场区域Ⅰ和Ⅱ中做匀速圆周运动的轨道半径分别为 和 ,区域Ⅱ中磁感 应强度为 . 由牛顿第二定律得 qvB=m ,qvB′=m 粒子在两区域中运动的轨迹如图所示,由几何关系可知,质子从 A 点出匀强磁场区域Ⅰ时的速度方向与 OP 的夹角为 ,故质子在匀强磁场区域Ⅰ中运动轨迹对应的圆心角为 ,则△O1OA 为等边三角形 2B B′ = ( 3 1) 2 mv qB + 1r 2r B′ 2 1 v r 2 2 v r 30° 60θ °= , 解得 (2)由几何关系可得,Q 点到 O 点的距离为: . 考点:带电粒子在磁场中 运动 【名师点睛】带电粒子通过磁场的边界时,如果边界是直线,根据圆的对称性得到,带电粒子入射速度方 向与边界的夹角等于出射速度方向与边界的夹角,这在处理有界磁场的问题常常用到. 6、(2020·湖南省高三上学期第三次月考)如图所示,电源电动势为 3 V,内阻不计,两个 不计电阻的金属圆环表面光滑,竖直悬挂在等长的细线上,金属环面平行,相距 1 m,两环分别与电源正负 极相连.现将一质量为 0.06 kg、电阻为 1.5 Ω 的导体棒轻放在环上,导体棒与环有良好电接触.两环之间有 方向竖直向上、磁感应强度为 0.4 T 的匀强磁场.重力加速度 g=10 m/s2,当开关闭合后,导体棒上滑到某 位置静止不动, (1)试求在此位置上棒对每一个环的压力为多少? (2)若已知环半径为 0.5 m,此位置与环底的高度差是多少? 【答案】(1)0.5 N (2)0.2 m 的 1OA r= 2 1 130 2r OAsin r= ° = 2B B′ = 2 ( 3 1)30 2 mvx OAcos r qB + += ° =【解析】 (1)金属棒受到的安培力为: ; 对金属棒进行受力分析,金属棒受到重力、安培力和两个环的支持力,如图: 因为金属棒静止,根据平衡条件得每个环对棒的支持力 FN, 得:FN=0.5N 根据牛顿第三定律,每个环受到的压力为 0.5N; (2)由于: 所以: θ=53° 所以金属棒上升 高度为: h=r−rcosθ=0.5−0.5cos53∘=0.2m 的 30.4 1 N 0.8N1.5 EF BIL BL R = = = × × = 2 2 2 22 ( ) 0.8 (0.06 10) N 1.0NNF F mg= + = + × = 0.8 4tan 0.6 3 F mg θ = = =

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料