2.3从“买布问题”说起---一元一次方程的讨论(2)(三)
【教学目标】
1.会去分母,并通过去分母了解化归思想;
2.让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;
3.熟练掌握一元一次方程的解法;
4.培养学生的建模能力及创新能力.
【对话探索设计】
〖探索1〗
P90问题中的方程怎么解?
(1)解方程
教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.
+
++x=33时,如果先合并,得到方程
______________________,
把系数化为1,就得到方程的解_____________.
(2)解方程+++x=33时,如果先去分母,方程的两边同乘___________,就得到方程_________________;
再合并,得到方程___________;
把系数化为1,就得到方程的解________.
(3)比较上面两种解法,你能得出什么结论?
〖探索2〗
解方程4-=13时,如果不先去分母怎么解?如果先去分母呢?试比较两种解法.
〖归纳〗
有的方程中有些系数是分数,如果化去分母把系数化为整数,一般可以使解方程中的计算简便.
〖探索3〗
解方程(y+1)+(y+2)=3-(y+3)时,一般要先去分母,你知道方程的两边应该同乘一个什么样的数吗?
〖探索4〗
可以看作是3÷7;类似地, 可以看作是________;可以看作是_________.
〖探索5〗
解方程-2=-时,正确的做法是两边同乘方程中各分母的最小公倍数20,去分母得5(3x+1)-40=2(3x-2)-4(2x+3).
议一议,所得方程中有三处用了括号,这是为什么?不用括号行吗?
请继续解这个方程.
〖探索6〗
小英同学解方程-=1时,去分母,把原方程化为:2x-1-x+2=1.你能指出它犯了哪两个错误吗?你能帮她改过来吗?
〖探索7〗
学了”去分母”以后,民辉同学在计算时,把分母去掉得3+2=5.对吗?
〖归纳〗
1.方程去分母的两个要点.
2.一元一次方程解法的一般步骤.
〖例题学习〗
P91.例4
〖练习〗
P92.练习(1)
〖作业〗
P92.练习(2),P93.习题3(1),(2).
〖补充练习〗
A、B两地相距15千米,甲步行从A出发去B,2小时后乙骑自行车也从A出发去B,两人同时到达B地.回来时,甲、乙两人同时出发,甲仍步行,乙仍骑自行车,乙回到A地时,甲离A地还有10千米.求甲步行,乙骑自行车的速度.